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DISCLAIMER

This program has been tested, but exhaustive testing is naturally
impossible. Hence, the Interpretation and Access Division makes no
warranty, expressed or implied, as to the performance of this program.
The users of the program are expected to make the final evaluation as to
the usefulness and correctness of the program in their own set of
circumstances.

It is recognized that computers and other electronic aids are useful and
necessary parts of modern engineering practice. However, the use of
such tools does not relieve the engineer from the requirement to provide
a safe and adequate design. Ultimately, the engineer is responsible for

the correct working of the software and hardware used and of the design
that results.
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1. ABSTRACT

FORTRAN 77

IBM PC or compatible with a minimum 640K ram, math co-processor and
graphics card.

Interpretation and Access Division, Surveys and Information Systems Branch,
Environment Canada

To provide a user-friendly interactive package to:

1) enter or import flow data into the program;

2) list contents of stored data sets;

3) edit existing data sets;

4) save entered or edited data by placing it into permanent storage;

5) perform nonparametric tests, identify low and high outliers and piot
data;

6) compute the flood frequency regime using one or more frequency
distributions and/or nonparametric methods.

The sample series of annual flood data is input to the program via the
keyboard or importing of files. Historic information may, as well, be
entered via the keyboard.

The monitor is the usual mode of display. Hard copy may be obtained using
a variety of printers.

Output includes:
i) the ranked input series of annual floods, with high and low outliers
denoted, and empirical probabilities.
ii) Estimates of population statistics and distribution parameters.
iii) Flows for preselected return periods.
iv) Plots of the frequency curves and other displays of data.

The number of observations in a data set cannot exceed 150.
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ro me:

. roisseur:

But/Technique:

Sortie:

Observations:

1. RESUME

FORTRAN 77

IBM PC ou compatible avec 640K RAM minimum, co-processeur mathématique et
carte graphique

Interprétation et Acces
Relevés et Systemes d’information
Environnement Canada

Fournir un progiciel interactif 2 la portée de 1'utilisateur pour:

1) TI'entrée de données relatives 2 1’écoulement en période de crue.

2) le listage de fichiers de données enregistrés.

3) la révision de fichiers existants

4}  la préservation de fichiers entrés ou révisés en les introduisant dans la mémoire
permanente.

5} la réalisation de tests non paramétriques, 1’identification de données aberrantes
en dega et au dela de la moyenne et le tragage de courbes.

6) la calcul de la fréquence des crues en utilisant une ou plusieurs distribution(s)
de fréquences. s

La série d’événements hydrologiques annuels peut étre introduite par clavier ou par
transfert des fichiers de données enregistrés dans la mémoire de grande capacité. Les
renseignements historiques peuvent aussi étre introduits par clavier.

L’écran cathodique est le mode usuel d’affichage. Les sorties d’ordinateur peuvent
étre obtenues en utilisant une des plusieurs imprimantes compatibles.

Les sorties comprennent:

i)  les données d’entrée concernant les crues annuelles parmi lesquelles sont
indiquées les données aberrantes en deca et au deld de la moyenne et les
probabilités empiriques.

i)  des estimations faites A partir de I’échantillon ainsi que des parametres de
distribution.

iii)  les débits pour des périodes de récurrence déterminées en avance.
iv)  des tracés facultatifs des courbes de fréquence et d’autres affichages des
données.

Le fichier de données ne peut contenir plus ¢~ 150 observations.
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INTRCDUCTION

2. INTRODUCTION

In 1976, the governments of Canada and the Provinces embarked on a program of flood damage
reduction emphasizing flood plain mapping. It was envisaged that such an effort would be of benefit to
current and future generations of Canadians through the alleviation of unnecessary hardship and sacrifice.
To this end, Environment Canada released guidelines entitled "Hydrologic and Hydraulic Procedures for
Flood Plain Delineation” and made available documented computer programs for performing single-site
flood frequency analyses.

Since 1976, Environment Canada has made several additional computer programs available for:
1) performing nonparametric tests for homogeneity, trend, independence and randomness, (Shiau and
Condie, 1980); 2) detecting low and high outliers (Pilon and Condie, 1982); and 3) handling the
“problem” sample containing zero flows, low outliers, and/or historic information (Condie and Harvey,
1984).

The technique of flood frequency analysts has progressed and our capabilities in analyzing and
interpreting flood data have increased. The culmination of these advances is represented in the user-
friendly interactive CFA computer package documented herein. This package allows the user to: easily
enter data for analysis from standard Water Survey of Canada flood data files (Inland Waters Directorate,
1980); modify data sets so as to add, delete, or modify all stored information; save modified data sets for
future use; perform nonparametric tests for homogeneity, trend, independence and randomness; perform
tests for low and high outliers; determine T-year events for the straightforward case, samples with historic
information, samples with low outliers, samples with zero flow values, and combinations of historic
information, low outliers, and zero flow values. The probability distributions incorporating these
enhancements include: :

1) the generalized extreme value;
2) the three-parameter lognormal;
3) the Log Pearson Type III; and
4) the Wakeby.

The Weibull distribution also has all the mentioned enhancements, save the capability of handling
historic information.

CFA has been designed to handle not only the standard "no problem” sample, but also to handle
all combinations of highs, lows, and zeros. Eight combinations are possible:

a) the standard case;

b) historic highs;

¢} historic highs and low outliers;

d} historic highs, low outliers, and zeros;
e} historic highs and zeros;

) low outliers;

g) low outliers and zeros; and

h) zeros.

All cases except {d} and (e) have been found in hydrometric records from Canadian rivers. The
package’s componenis have been tested many times using real and simulated data and have proven
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reliable. Testing of cases (d) and (g) was done by adding false zeros to real records that contained
historic highs and identified low outliers, or to real records that contained historic highs only.

This version of CFA now supersedes programs previously released by this office. However, it
is emphasized that any previous analyses made using earlier programs are not necessarily invalidated.

The authors would appreciate hearing from users who have any difficulties, find any errors, or

have suggestions for improving the package. If you are quite happy with the package, we would be
pleased to hear from you too!

This version of CFA was designed to run on an IBM PC or compatible with at least 640K RAM,
a math co-processor, and a graphics card. A hard disk is highly recommended. CFA is written in
Microsoft Fortran 5.0. Graphics output is generated with HALO Professional Graphics.

HALQ is a registered trademark of Media Cybernetics, Inc.

IBM is a registered trademark of International Business Machines Corporation.

LOTUS and LOTUS 1-2-3 are registered trademarks of LOTUS Development Corporation.
MICROSOFT is a registered trademark of Microsoft Corporation.
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3. TECHNICAL BACKGROUND

For clarity, this user manual is principaily descriptive with a minimum of mathematical content.
All the necessary equations and solution algorithms have been grouped in the appendices.

3.1 _ CHARACTERISTICS OF THE DISTRIBUTIONS

This section gives a brief description of the distributions incorporated in the package. These are
the generalized extreme value, the three-parameter lognormal, the Log Pearson Type III, the Wakeby,
and the Weibull distributions.

3.1.1 The Generalized Extreme Value (GEV) Distribution

The extreme value (EV) distributions figure prominently in hydrologic literature. They represent
attempts to deduce, on purely theoretical grounds, how annual maximum floods are distributed. The
GEV family can be divided into three classes, corresponding to different ranges of the shape
parameter, k. The three classes are referred to as Fisher-Tippett Type 1, Type 2, and Type 3 (Fisher
and Tippett, 1928). They are also sometimes referred to as EV1, EV2, and EV3. In practice, k values
lie in the range of -0.6 to + 0.6. The range is divided among the three classes as follows: a negative
k corresponds to Type 2, a k of zero corresponds to Type 1, and a positive k corresponds to Type 3.
Figure 1 shows how these variates are related to each other,

The GEV is a three parameter distribution. Parameters p and « represent location and scale,
respectively. If k is equal to zero, then the distribution appears as a two parameter EV1. If k is
negative, the lower bound of the EV2 is (. + o/k). A positive k value implies an EV3 which is upper
bounded at (& + a/k). :

Figure 2 shows the relationship of the skewness of the sample with the shape parameter k. When
the skewness is 1.14, the corresponding shape parameter is zero — the EV1 distribution. The theoretical
kurtosis of the EV1 is 5.4. Samples having a skewness greater than 1.14 are EV2, while a skewness less
than 1.14 infers an upper bounded EV3.

Figure 3 shows the relationship for the third L-moment ratio (skewness) and the shape
parameter k. When the third L-moment ratio is . 1699, the corresponding shape parameter is zero. The
fourth L-moment ratio (kurtosis) for the EV1 distribution is .1504. L-moment ratios greater than .16%99
infer an EV2 distribution, ratios less than .1699 infer an EV3 distribution.

The EV1 distribution is also known as the Gumbel I or the double exponential distribution. If
a variate x has an EV3 distribution, then x is said to have a Weibull distribution.
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Figure 1: The three types of extreme value variate shown as
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Figure 2: Skewness, g, of extreme value variates as a function of
the shape parameter, k (Natural Environment Research

Council, 1975). .
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Figure 3: L-Moment Ratio, 1:3 as a function of the shape parameter K
for the generalized extreme value distribution.
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The EV distributions have an interesting property. Suppose that x is an EV variate, and let Z
be the maximum (or extreme) value of a random sample of size N from this distribution. Because the
sample is random, Z is also random with the special property that the distribution of Z has the same form
as that of x although the mean and possibly the standard deviation of Z differ from those of x. This is
the major characteristic of the EV distributions, namely that maxima of random samples drawn from such
populations have the same form of distribution as the parent.

The utility of a GEV distribution is demonstrated if an extreme value distribution is wanted, but
the type is unknown. When sample data are available, the GEV's distribution parameters u, o, and k
may be obtained by several different methods. If no historic information is present, then the method of
L-moments (Hosking 1988, 1989, 1990) is used to estimate the parameters. The value of k indicates to
which of the extreme value distributions the sample belongs. If historic information is present, then
historically weighted moments are used. Appendix B gives a more detailed account of the fitting
procedures and the distribution.

3.1.2 The Three-Parameter Lognonnak Distribution

Hydrologic events can seldom be described by the normal distribution since these events are more
commonly skewed. Several theoretical transformations have been developed for normalizing a skewed
distribution, because it is generally easier to draw statistical conclusions from the normal distribution
whose theoretical properties are well known. In flood frequency analysis it is generally necessary to
extrapolate far beyond the range of observed events and the idea of a normalizing transformation is very
attractive. One such transformation leads to the lognormal distribution. Essentially, use of this
distribution implies that the logarithms of the data set are normally distributed. By virtue of the
logarithmic transform, the theoretical coefficients of skewness and kurtosis of the transformed data should
be 0.0 and 3.0, respectively. These theoretical characteristics give a handy subjective assessment of how
well the lognormal distribution fits the data sample of annual foods.

Experience with Canadian rivers shows that the logarithmic transform generally results in
overdoing the normalizing process. Basic data that are positively skewed sometimes show a substantially
negative skew coefticient of the logarithmic transform.

It has been found that the inclusion of a third parameter will greatly improve the normalizing
transformation, hence the name, the three-parameter lognormal distribution. In its simplest terms, the
function y = In(x-a) is normally distributed. The variate x is bounded below by the parameter a, and
in its conventional form the distribution cannot have negative skewness. If the transform y = In(a-x) is
assumed to be normally distributed, then the distribution of x is negatively skewed, is unbounded below,
and is upper bounded by the parameter a.

Estimates of the parameters of the distribution can be made by several different methods and,
during development of this program, results obtained by fitting the distribution by moments were
compared with those obtained by a maximu _. likelihood fit. The maximum likelihood fitting method was
clearly superior in that the computed coefficients of skew and kurtosis of the transformed data were much
closer to the theoretical values of 0.0 and 3.0. Thus only the maximum likelihood fit is used, except on
rare occasions where it seems unobtainable and a moment fit is used. Historically weighted moments are
used as a backup to the maximum likelihood technique for the historic analysis.
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The three-parameter lognormal distribution is exceptionally flexible and very well suited to flood
frequency analysis. When the parameter a becomes zero, then the distribution becomes the lognormal.
Extensive testing during the development of this program showed that the coefficient of skew of the
transformed data averaged 0.055 with a low value of 0.0008, an excellent check on the success of the
fit. The mean kurtosis was a reasonable 3.255.

Appendix B further documents this distribution.
3.1.3 The Log Pearson Type I Distribution

A group of frequency distributions can be derived from a generalized differential equation
proposed by Karl Pearson. This generalized equation has four constants. By equating some of them to
zero or to each other and solving the differential equation, a series of symmetrical or skewed distributions
is found. One possible solution leads to Pearson’s Type Il distribution. If it is assumed that the

logarithm of the variate follows a Pearson Type III distribution, the distribution of the variate itself is the
Log Pearson Type III.

The Log Pearson Type III distribution has three parameters. Bobée (1975) shows the many
different shapes the distribution can take, depending on the relationship between the parameters and their
signs. Not all these shapes seem acceptable in flood frequency analysis and the user of this program is
advised to study Bobée’s 1975 article particularly with regard to the distribution’s shape. The range of
the variate also depends on the sign of one of the parameters. The variate may have a positive lower
boundary and be unbounded above, or, it may have a zero lower boundary with a positive upper bound.
Parameters of the distribution are a, b, and m. The boundary parameter is m, while a and b represent
scale and shape, respectively. A positive upper bound was found in about 67 percent of the test stations,
and, depending on the position of this upper bound relative to the largest observed flood in the data
sample, it can be very difficuit to judge how well this distribution fits the data. Cases have been found

using a moment fit where an upper boundary parameter was found to be less than the largest observed
flood.

When combinations of parameters lead to apparently impractical shapes of the distribution, or
where an upper bound is found to be less than the greatest observed flood, the program does not give the
flood frequency regime. The program is designed to provide assistance to the user by indicating the
upper boundary when it occurs. The distribution parameters will always be given in the output and the
user may relate them to the combinations shown in Bobée (1975). It is very difficult to give any advice
on the interpretation of an upper boundary and its implications. Points to be considered are the proximity
of the upper boundary to the largest observed flood and the general appearance of the plot.

For the conventional analysis, the method of maximum likelihood is used as the primary
technique to estimate the parameters of the distribution. If a maximum likelihood solution is not

- obtained, the program reverts to the method of moments. When historical information is present, the

program estimates the parameters using historically weighted moments. Appendix B gives further
information concerning this distribution.
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3.1.4 The Wakeby Distribution

The Wakeby distribution is a very flexible five-parameter distribution proposed by Houghton
(1978) for modelling flood flows. An advantage is that the distribution function can assume shapes such
as "S-bends” and "hockey sticks”, unrealizable by conventional distributions. The Wakeby was
introduced as the "parent” of distributions because of its ability to mimic most conventional hydrologic
distributions. This is true only if the parameters are chosen correctly, while the converse is not true.

The probability function of the Wakeby in inverse form is:
x = -a (1-F)® +c(1-F)™% + ¢ B.92

where F is the probability of not exceeding x, e is a location parameter, a and ¢ are scale parameters,
and b and d are shape parameters. One of the most attractive features of the Wakeby is that the right and
left-hand tails of the distribution can be modelled separately. That is, parameters a and b govern the left-
hand (lower floods) tail while parameters c and d govern the right-hand ¢higher floods) tail. Thus, two
parameters are required to define each of the tails and the fifth, e, is a location parameter. Houghton
(1978) states that

"in traditional estimation procedures the smallest observations can have a substantial
effect on the right-hand side (large observations) of the distribution. But the left-hand
side (small observations) does not necessarily add information to an estimate of quantile
on the right-hand side. Indeed, since floods are not known to follow any particular
distribution, it seems intuitively better to divorce the left-hand side from the right".

An added feature of this distribution is its capability to have less "separation effect” than that

observed by conventional distributions (Matalas, et al., 1975). Greis (1983) explains that the separation
effect .

“refers to the differences which appear between samples of synthetic streamflow data and
natural streamflow data when the standard deviation of skew is plotted versus the mean
of skew for regional data. The natural data consistently display a larger standard
deviation of skew than the synthetic data indicating that nature has been given more
inherently unstabie skews than most statistical distributions”.

Greenwood, et al. (1979) introduced the concept of probability weighted moments and
demonstrated their use in estimating the Wakeby parameters, giving a solution algorithm later improved
by Landwehr, et al. (1979 a,b). Hosking (1990), introducing the concept of L-moments, indicates that
probability weighted moments "...can be expressed as linear combinations of L-moments.” He states as
well that L-moments are "more convenient” as “they are more directly interpretable as measures of the
scale and shape of probability distributions.” For standard samples and samples with low outliers, the

method of L-moments is used herein, and the computer program is an adaptation of one dev..oped by
Hosking (1988).

If historic information is available, then Houghton’s (1978) algorithm is used with a modification
of the rank statistic due to Benson (1950), in conjunction with the Cunnane plotting position formula.
If low outliers and historic information are present, then the sample exclusive of low outliers is treated
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first using the historic algorithm, and then the effect of the low outliers is accounted for using the
conditional probability function.

When performing a conventional analysis, the method of probability weighted moments is used
to obtain the parameters. If a historical analysis is performed, then parameters are estimated using a least
squares algorithm similar to that prepared by Houghton (1978).

The distribution itself, as well as programming, imposes limits on the magnitudes of parameters
b and d. Furthermore, certain combinations of both magnitudes and signs of parameters a, b, ¢, and d
lead to improper definitions of the probability function. Since it is arithmetically possible to obtain these
combinations, a sub-routine in the program checks the parameters, and if a valid set of parameters is not
obtained then the program will inform the user. If the parameter d is negative, then the distribution has
an upper boundary at e. Appendix B lists the valid parameter combinations and tests for admissible
Wakeby parameter combinations, as well as further documenting the distribution. A special case of the
Wakeby occurs when parameters a and b or ¢ and d are zero. In such cases, the Wakeby parameters are
obtained by fitting a generalized Pareto distribution to the data by L-moments (Hosking, 1988, p.58).

3.1.5 The Weibuil Distribution

The interpretation of the frequency analysis of negatively skewed runoff samples can prove
difficult for some of the distributions of this package. The generalized extreme value (EV3), the three-
parameter lognormal, and the Log Pearson Type IIl may be upper bounded for the untransformed sample
having a negative skew. The Wakeby may be upper bounded depending on the sign of parameter d. A
problem arises if the upper boundary is located very close to the maximum observed sample member.
Such a problem may lead to the maximum observed sample member. Such a problem may lead to an
underestimation of extreme flood events, When a moment fitting method is used, the upper boundary
may even be less than the observed maximum, an impossibility, thus making the analysis useless.

The Weibull distribution offers a useful alternative, since it can be fitted to samples with skewness
as low as -1.08. The Weibull distribution is bounded below and remains unbounded above. Parameter
estimates are obtained using the method of moments. This distribution is used only for "non-historic”
samples having negative skewness in the untransformed data. Appendix B gives further information
concerning this distribution.

3.2 NONPARAMETRIC FREQUENCY ANALYSIS

The previous section describes the parametric approaches to flood frequency analysis available
in this package. In hydrologic practice, there does not as yet appear to be any theoretical justification
for the selection of one distribution over another. Simulation studies, on the other hand, have
demonstrated that the generalized extreme value, three parameter lognormal, and Wakeby distributions
can yield more accurate estimates of quantile than can the Log Pearson Type III distribution (Wallis and
Wood, 1985; Pilon, et al., 1987). This even occurs when the synthetic flood generator is based on the
Log Pearson Type III distribution.

It is unfortunate that nature is not as simple as the simulation studies depict it to be. This is
particularly so with regards to the torm of the density function, e.g. unimodai. In an attempt to
overcome certain distributional assumptions and limitations, the nonparametric method has been developed
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and advocated (Adamowski, 1989). The approach does not require assumptions to be placed regarding
the form of the density function of the generating process. And, in application, the method is suitable
when the generating mechanism produces floods having multimodal or mixed densities.

The non-parametric kernel density estimation method requires the selection of a kernel function,
K (-), and the computation of a smoothing factor, h {Adamowski, 1985). The kernel function is itself
a density function and is assumed to be Gaussian or normal in this package. The smoothing factor is
estimated using the cross-validation procedure (Rudemo, 1982). These procedures have been adapted for
the case when historic information is present.

3.3 OUTLIER ANALYSIS

The presence of outliers in a data sample will cause difficulties in satisfactorily fitting a
parametric frequency distribution to the sample. Depending on whether the outliers are high or low, and
on the chosen frequency distribution, the estimates of the T-Year event will often be underestimated or
overestimated. Techniques are available for appropriately dealing with these outliers; but, these outliers
must first be detected.

It is emphasized that if any historic information can be found for the highest member or members
of the sample, then this information should be included in the analysis, even though a statistical test may
fail to identify these members as high outliers.

The theory of outliers is still incomplete and has only been satisfactorily developed for a normal
population. Application of the test is simple, requires only the mean and standard deviation of the
sample, and tabulated values of the Grubbs and Beck (1972) statistic for various sample sizes and
significance levels. Tabulated values of this statistic at the 10 percent significance level are listed in
Table 1. The following polynomial can be used for estimating the tabulated values:

Y = - 3.62201 + 6.28446 N4 - 249835 N2 & 491436 N34 - 037911 N

where N is the number of observations. Truncating the values of Y beyond the third decimal place
should give results identical to the tabulated Grubbs and Beck statistic (Ky) for N observations as per
Table I.

The Grubbs and Beck outlier test has been adopted in modified form by the Hydrology
Subcommittee (1982) of the United States, and this package follows the sequence herein. Since the test
is applicable only to samples from a normal population, the assumption is made that the logarithms of
the sample members are normally distributed. Rearranging the Grubbs and Beck test as done by the
Hydrology Subcommittee (1982), the two following equations are obtained:

Xu

il

exp(x + Ky$) - (la)

Xy

exp(x - Kys) (1b)

where x and s are the mean and standard deviation of the natural logarithms of the sample, respectively,
and Ky is as previously defined.
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3.4  ANALYSIS WITH ZEROS

The occurrence of zeros in a sample can cause difficulties when using some logarithmic types of
parametric distributions because the logarithm of zero is minus infinity. However, for other distributions
such as the generalized extreme value and three-parameter lognormal, the logarithm of the variate is not
taken. So, unless (x-a) is exactly zero, there would be no mathematical difficulty in fitting the three-
parameter lognormal distribution.

The three-parameter lognormal distribution was used to determine if the procedure proposed for
the analysis of samples with zeros gave reasonable results. The records from 16 unregulated seasonal
stations, each of which had experienced at lest one season of total dryness, were selected to test the
method. The analyses were not very impressive, particularly the plots, and it was decided to rework the
analyses using conditional probability.

If the probability of occurrence of zero flow is P(0), then the probability that flow does occur is
[1-P(0)]. In standard statistical notation, the probability that a variate does not exceed x is F(x), and

hence the probability that flow exceeds x is [1-F(x)]. Then the probability that flows occurs and exceeds
X is:

P(x) = [1-P(0)] [1-F(x)] (2)

If a hydrometric record of length N years contains Z years in each of which no flow was
recorded, then the probability of an entirely dry year in the future is Z/N. This follows from the
empirical definition that gives the probability of an event as its relative frequency of occurrence in an
extended series of trials. It is assumed in this definition that the probability tends to a definite limit as
the number of trials tends to infinity. Although it may seem to be labouring a simple point, it is
important to be aware of these conditions when estimating P(Q) from the short periods of record usually
available in hydrology. For the three-parameter lognormal distribution, F(x) in the preceding equation
is the integral of the three-parameter lognormal distribution from the boundary parameter a to x. Note
that the parameters of F(x) are estimated using only non-zero flow events.

The records of the 16 test stations were reanalysed using conditional probability, and on
comparison this method gave subjectively superior analyses in 13 cases. Hence, the conditional
probability method has been chosen for all the distributions.

3.5 ANALYSIS WITH LOW OUTLIERS

The presence of low outliers in a sample of annual maximum floods can create problems in
producing a satisfactory parametric flood frequency analysis, particularly when the sample is small. Most
noticeably, the low outliers affect the skewness, which becomes small and sometimes even negative, with
the attendant difficulty in fitting the more commeon density functions in their conventional forms.

Assume for the moment that in a sample of size N, L of these observations are identified or are
to be treated as low outliers. Now let n be the number of observations excluding the L low outliers; thus,
n = N-L. The first step of the analysis proceeds exactly as in the With Zeros case. Now rearranging
Equation (2):

F(x) = 1-P(x) (n+L)/n (3
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then since F(x) cannot be less than zero, and n and L are positive numbers, P(x) cannot exceed
n/(n + L), or floods of return periods less than (n + L)/n cannot be computed. Furthermore the
probability function corresponding to Equation (3) is not truly that of the theoretical distribution, and
curves more sharply downward at the lower return periods. These are not serious drawbacks since they
have their largest effects at the shorter return periods that are not usually within the range of interest.
At return periods greater than 2 years the conditional probability function can be simulated almost exactly
by mathematically retrofitting the generalized extreme value, the three-parameter lognormal, and the
Weibull distribution. The Log Pearson Type III uses a method based on synthetic statistics as illustrated
by the Hydrology Subcommittee’s publication (1982). A retrofitting algorithm for the Wakeby
distribution was not found.

Retrofitting leads to a probability function of the distribution in question and simulates exactly
the conditional probability function between return periods of 2 and 100 years for the three-parameter
lognormal and Weibull distribution and between return periods of 1.582 and 100 years for the generalized
extreme value distribution. The retrofitted function is only off by less than one percent at a return period
of 500 years. When extrapolated downward to return periods of less than the lower return period, the
shape of the curve is much improved and reduces the drawbacks previously mentioned. When retrofitting
is used by the program, the statement "PARAMETERS OF THE DISTRIBUTION WHICH
DUPLICATES THE CONDITIONAL FUNCTION:" appears prior to the listing of the parameters.
Appendix B documents the retrofitting algorithms used in the package.

Note that the retrofitting of the conditional probability function for the generalized extreme value,
the three-parameter lognormal, and the Weibull distributions is only performed if no zeros are present
in the sample. A conditional probability function is used if lows and/or zeros are present in the sample.
The Log Pearson Type III uses the conditional probability adjustment as recommended by the Hydrology
Subcommittee (1982) for samples having years of zero flow and/or low outliers.

3.6 TYPES OF HISTORIC INFORMATION

The conventional sample available for flood frequency analysis consists of a series of maximum
flows obtained from a continuous record of discharge at a hydrometric station. These maxima may be
either instantaneous peaks or daily flows occurring in each calendar or water year, or in some specified
season throughout the period of record.

If the period of operation of the hydrometric station is N years, then the sample size is N. N is
typically quite small. Obviously, any historic information which effectively enlarges N will improve the
frequency analysis. The following is a description of the types of historic information and the notation
and terminology used.

3.6.1 Extreme floods prior to the gauged record

On many rivers some large floods may have occurred in the past, often many years prior to the
installation of the hydrometric station. If their magnitudes and years of occurrence are known, then that
historic information can be incorporated in the frequency analysis using this program. Listed below are
the definitions of symbols which appear on the printouts and are further explained using a hypothetical
example.
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If NA = number of fully specified floods above the threshold
NB = number of fully specified floods below the threshold
NC = number of censored floods below the threshold
N = = number of observed or fully specified floods
YT = total time span in years
NHA = number of historic floods above the threshold

then N = NA + NBand YT = NA + NB + NC

Let the example hydrometric record be available for the years 1940 through 1982. A flood of
known magnitude occurred in 1920 and is known to be the largest since 1900. At first glance, the data
available for analysis are the 1920 flood -and the recent series from 1940 onward. There is, however,
the additional information that in the 39 missing years - 1900 through 1919 and 1921 through 1939 - the
annual flood was less than the 1920 value. These missing years are the censored data and the censoring
threshold is the value of the 1920 flood. So NA = {, NB = 43, NC = 39, N = 44, YT = 83, and
NHA =1. When performing an historical frequency analysis, only YT, NHA, and the censoring
threshold need be specified supplementary to the conventional data required by CFA.

3.6.2 Extreme floods in the gauged record

The term historic need not apply only to floods which occurred before the installation of a
hydrometric station to collect a continuous record. Methods used in CFA are equally adaptable to the
case of the occurrence in the gauged record of the largest flood or floods in the history of the area,
provided that there is reliable local information that the flood or floods were the largest since some known
date. Suppose that at the same hypothetical location described in (a), the 1960 flood is reliably known
to be the second highest singe 1900. Then NA = 2 and NB = 42. NC, N, YT, and NHA remain at
39, 44, 83, and 1, respectively, but the censoring threshold then becomes the value of the 1960 flood.
Note that NHA does not affect the computations and is included only for display purposes.

3.6.3 Out of bank floods

This type of record can be found in the British Isles, the U.S.A. and possibly other countries.
Floods that rose above a certain level, generally bank-full, were marked by dated stone markers and
discharges have since been estimated, and the assumption is that in the years for which no markers exist,
the flood was less than bank-full discharge. In an analysis of this type, the total time span, YT, is
obtained from the data of the earliest marker, and the censoring threshold is bank-full discharge. The
number of fully defined floods, N, is clearly the number of annual maximum floods in the gauged record
plus the number of markers. The program computes NA, NB, and NC. The number of historic floods
above the threshold, NHA, is merely the number of markers and is for display purposes only.

3.7 ANALYSIS WITH HISTORIC INFORMATION

There are at least two methods of fitting parametric distributions to samples containing historic
information. The oldest and most commonly used method is that of historically weighted moments; and
a more recent development is to consider the series of floods to be a censored sample from some
postulated distribution, and then fit the distribution to the sample using maximum likelihood theory.
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If a sample of x’s, size N, is drawn from a postulated distribution but with the parameters as yet
unknown, the likelihood function L can be expressed in terms of the sample and the unknown parameters.
This likelihood function L is the probability that all the members of the sample were drawn from the
postulated distribution, and the principle of maximum likelihood states that the unknown parameters
should be chosen to maximize L.

Suppose that the magnitude of a sample member is unknown, but the sample member is known
to be less than a certain value x,, the censoring threshold. -Such a member is called a censored member.
Then, the probability that the sample member was less than x, and came from the postulated distribution,
is the probability function evaluated at x,, F(x,). By extension the probability that r sample members
were less than x, is [F(x ). For a censored sample from a postulated distribution with parameters yet
to be determined, since the likelihood function is a probability, then L can be expressed in terms of the
fully specified sample members, the number of censored values below the censoring threshold, and the
distribution parameters. Maximizing L by taking partial derivatives with respect to each parameter in
turn and equating them to zero gives a set of simultaneous equations, the maximum likelihood estimators,
that when solved give maximum likelihood estimates of the distribution parameters.

When the parameters have been estimated, the floods of the required exeedance probabilities or
return periods can easily be computed.

For the three-parameter lognormal distribution, it has been shown by Condie and Lee (1982) that
the censored maximum likelihood approach is superior to the traditional historically weighted moments
method in terms of providing the least biased estimates of the T-year floods. The censored maximum
likelihood method is used primarily in this program and in more than 1000 tests has never failed to give
a solution. The historically weighted moment fit is included as a backup method, in case of failure.
Appendix B further documents the parameter estimation via historically weighted moments.

Condie and Pilon (1983) have developed the censored maximum likelihood approach for the Log
Pearson Type [1I. The technique requires refinement, thus historically weighted moments are used. The
generalized extreme value distribution uses the historically weighted moment approach when dealing with
historic information.

If historic information is available, the Wakeby distribution parameters are estimated using a
regression method similar to that proposed by Houghton (1978). Rewriting equation B.80 gives:

x = -aP? + cP"4 + ¢ (4)

where P is estimated using the Cunnane (1978) probability plotting formula, adjusted using the methods
of Benson (1950). Appendix B further documents the parameter estimation via least squares regression.

The kernel estimate of the nonparametric method is adjusted to reflect historic information in a
fashion similar to historically weighted moments and the expectation theory of the maximum iikelihood
approach. Appendix C further documents the parameter estimation when historic information is present.
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3.8 PLOTTING POSITION

The Cunnane (1978) plotting position is used to plot the data on the probability paper. The
plotting formula can be written as:

where T is the return period, N the sample size, and m the rank, starting with rank 1 for the largest.
It is emphasized that the plot should be used as a guide to show how well the distribution has been fitted
to the sample series of floods. ‘

The position may be adjusted if historic information exists using Benson’s (1950) technique.
When historic information is present, the return periods for floods above and equal to the threshold are
computed from;

TZ(YT+.2)
m - .4

The return period for each flood below the threshold is computed from:

T=(YT+.2)
m, - .4

where

m, = NA + (YT-NA) (im-NA)/NB

and where YT, NA, NB, and m are as previously defined.
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39 STATISTICAL TESTS FOR INDEPENDENCE, TREND, HOMOGENEITY, AND
RANDOMNESS

Statistical frequency analysis assumes that the sample to be analyzed is a reliable set of
measurements of independent random events from a homogenous population. The validity of this
assumption can be verified using statistical significance tests. Nonparametric tests are used exclusively
in this program. In addition to the statistical tests of this section, various graphical displays can be used
to assess the aforementioned assumption. These plots are available and are accessed under the "SCREEN
DATA" option of the program, which is documented in Chapter 4.

Brief descriptions of the rationale for each test are given here; fulier descriptions are given by
the Natural Environment Research Council (1975) and Siege! (1956). The theory of the tests is not given
but the required functions to be evaluated and the determination of their significance are given in
Appendix A.

3.9.1 Test for Independence

Two events can be considered independent only if the possibility of occurrence of either is
unaffected by the occurrence of the other. This definition can be extended to a sample of size N.
Practically, in a time series, independence can be measured by the significance of the correlation
coefficient between the N-1 pairs of the (i) and (i+1) members of the series and if the correlation
coefficient is not significantly greater than zero, then independence is assumed. It is noted here that, in
the strict mathematical sense, this does not necessarily define independence. To avoid the assumptions
made in the coefficient; the nonparametric Spearman rank order serial correlation coefficient is used.

3.9.2  Test for Trend

If successive measurements of members of a time series have been made during a period of
gradually changing conditions, then there will be a more or less noticeable trend in the magnitude of the
members of the series when arranged in chronological order. As an example from hydrology, it would
be expected that gradual land use changes in a drainage basin would affect the magnitude of the annual
flood. Similarly long term climatic changes will be reflected in the hydrology of a basin, although it is
customary to assume climatic time invariance.

3.9.3 Test for Homogeneity

If some more or less abrupt change occurred during the sampling period, then some difference
could be expected between the means of the subsamples before and after the change. Examples from
hydrology couid include the construction of an ungated reservoir in the basin, or a forest fire that denuded
a substantial portion of the basin. Assuming a normal distribution and that the two subsamples have the
same variance, then the difference in the subsample means can be tested for significance using the
distribution of Student’s t. These assumptions are not commonly met in hydrology and so the Mann-
Whitney nonparametric test is used instead. If two subsamples of approximately the same size are
chosen, it would be expected that if there were no changes in conditions, then the sums of the ranks of
the two subsamples would not differ by too much. The question to be answered is whether the difference
is significant or not. The Mann-Whitney U statistic is a function of the subsample sizes and their sums
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of ranks. The distribution of U is known and critical values at various levels of significance have been
tabulated. Hence a decision can be made on whether the means of the subsamples differ significantly,

The program provides a histogram of the data sample by months of occurrence, and the user may
then choose the most sensible seasonal split from the hydrologic point of view. Differences may be
expected between the means of floods occurring in different seasons, where again the question is whether
the means of the subsamples differ significantly. The Mann-Whitney nonparametric test can be used to
check this hypothesis. Computation methods are shown in Appendix A.

3.9.4 Test for General Randomness

This is a very simple nonparametric test. Data are ranked in chronological order, and the median
is determined. The number of runs of observations above and equal to or below and equal to the median
are counted. Theoretically, the number of runs, RUNAB, could be as high as the total number of
observations, indicating an extreme short term cyclic pattern, or as low as 2, indicating an abrupt change
half way through the period over which the sample was collected. Notice that the median is used since
the probability of exceeding the median is always 0.5, regardless of the probability distribution from
which the sample was drawn, thus making the test nonparametric or distribution free. The distribution
of RUNAB is known and upper and lower critical values have been tabulated, thus enabling a decision

to be made on whether the data are random or not. Appendix A further describes this test and gives
tables of critical values. '
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4. PROGRAM DOCUMENTATION

4.1 STARTING THE PROGRAM

A main memu will be displayed on the monitor from which the user can select the various tasks
to be performed. Figure 5 displays the main menu of CFA, Once it is displayed, the user should select
Data Entry or Data Set Directory before performing any other task. "Data Entry” places a data set into
the virtual memory of the computer. Once a data set is in virtual memory, the user can then perform
tasks on the data,

CONSOLIDATED FREQUENCY ANALYSIS PACKAGE - MAIN MENU
STOP THE PROGRAM

SINGLE SITE DATA MANIPULATIONS Data Entry
Data List
Data Edit
Data Save

DIRECTORY (H22FLOOD} List
Purge
Sort & Compress

STATISTICAL ANALYSIS Screen Data
Parametric Frequency Analysis
Nonparametric Frequency Analysis

BATCH MQDE Print Qutput

MOQODIFY Set-up File

Figure 5. Main Menu of CFA

4.2 DATA ENTRY

Once Data Entry has been selected by the user, the "Data Entry Menu" should appear as shown
in Figure 6. This menu item allows the user to place a data set of flood record for a site into the
computer. The data are primarily the series of year, month, and flows, along with site specific
information. Data can be manually entered using the keyboard or data can be read from mass storage
provided the data have been previously stored or transferred onto the system. Note that the disk master
file (H22FLOOD.DAT) is a data bank created for the storage of data that are to be used by CFA. CFA
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also has the ability to read files from the HYDAT CD-ROM 4.0 (Ecosystem Sciences and Evaluation,
1993) as well as 3.0 (Inland Waters, 1991) and ASCI format.

4.2.1 CD-ROM Files

CD-ROM implies Compact Disc Read-Only Memory and is a laser-read optical disc containing
historical discharge, water level and sediment data files of Environment Canada’s HYDAT database.
Daily discharges, annual maximum daily discharges, and annual instantaneous peak discharges can be
extracted using the software that accompanies the HYDAT CD-ROM. Item numbers 4 and 5 of the Data
Entry Menu of Figure 6 correspond with the two forms of data as provided from CD-ROM. If you are
a HYDAT CD-ROM user, refer to Appendix B of the HYDAT version 4.0 or Appendix C of version 3.0
USER’s MANUAL for an explanation of the expornt formais.

CONSGCLIDATED FREQUENCY ANALYSIS PACKAGE - DATA ENTRY MENU
RETURN TO MAIN MENU OF CFA

Disk Master File (H22FLOOD. DAT)

Keyboard Entry

CD-ROM Annual Maximum Instantaneous Peak Discharges or Levels
CD-ROM Annual Maximum Daily Discharges or Levels

ASCII File (LOTUS Print and CFA Export Formats)

Figure 6: Data Entry Menu of CFA
4.22 ASCH Files

ASCII files are a convenient and widely-used standard that can be used to import data and
information into CFA. Many commercially available software packages that perform text editing, word
processing, spreadsheet manipulations, etc., allow for the storage of materal into ASCII files. The

arrangement of the contents of the ASCII file is described in Section 4.5 of this report under the title
“Data Save".

4.3 DATA LIST - LIST CONTENTS OF DATA SET

This menu item allows the user to view the information contained in virtual memory regarding

a certain data set. The user has the choice of obtaining a hardcopy listing or simply viewing the data se¢
via the monitor.

4.4 DATA EDIT

This menu item is designed to allow the user to perform a variety of editing procedures on the
data set. Figure 7 shows the "Data Edit Menu". Note that "Data Edit" affecis only the data set in virtual
memory. If the user wants to save the modifications, then the "Data Save" feature should be used.

If observations of YEAR, MONTH, FLOW are being deleted, added or modified, then the
historic information may need alteration. For example, if an additional five years of record is being

Page 23



PROGRAM DOCUMENTATION

added to a previously created historical data set, the historic time span should be altered. The censoring .
threshold and the number of peaks above or equal to it may also need modification. -

CONSOLIDATED FREQUENCY ANALYSIS PACKAGE - DATA EDIT MENU
RETURN TO MAIN MENU OF CFA

EOIT Station Number, Name and Area
Any Entry of Year, Month, Flow
Existing Historic Information

ADD Histeric Information
Observation(s) Anywhere in the Sequence

DELETE All Historic Information
Observation{s) of Year, Month, Flow
The Entire Record from Mass Storage

LIST

Figure 7: Data Edit Menu of CFA

4.5 DATA SAVE

This Main Menu option allows the user to store in a permanent file the data set currently residing .
in virtual memory. Once selected, the user is shown Figure 8. Three avenues exist for the storage of
the data and information.

CONSOLIDATED FREQUENCY ANALYSIS PACKAGE - DATA SAVE MENU
RETURN TC MAIN MENU OF CFA

Disk Master File (H22FLOOD.DAT)
LOTUS Import File
ASCII File

Figure 8: Data Save Manu of CFA

If the first choice of the Data Save Menu is selected, then the data and information are stored in
CFA’s master file H22FLOOD.DAT. The data set will be stored in the master file under the name of
the "WSC STATION NO.". This station number must be less than or equal to 10 alphanumeric
characters. If a previous data set has been stored in the same master file under the same WSC STATION
NO., then the dat~ set will be over-written. Caution should be exercised when original data sets and
modifications are both wanted in permanent memory. Renumbering of the data set’s "WSC STATION
NQ." (=10 alphanumeric characters) is suggested using the "Data Edit" option of the Main Menu. For
example, 01AKQ001 could be renumbered to 01AKO0IB.

The second choice of the Data Save Menu permits the storage of the data and information into
a LOTUS import file format. The resulitant file can be directly imported into LOTUS 1-2-3. .
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0SQFO03
BOYNE RIVER NEAR CARMAN
33 378.000 90 1 187.000
33 NUMBER OF OBSERVATIONS
976.00 AREA
20 HISTORIC TIME SPAN
1 NUMBER OF FLOODS ABOVE CENSORING THRESHOLD
187.00 CENSORING THRESHOLD
0S0F003 1893 4 187.00
0S0F003 1919 4 13.500
050FQ03 1822 4 15.300

Figura 9;: ASCI File Format for CFA

The third choice stores the data in ASCII format. An example of the format is shown in Fig. 9.
Note that the first line contains the "WSC STATION NO.". This should be a unique identifier for the
data and information that follows. The second line is the station name. The third line is a sequence of
five numbers described in lines 4 through 8, inclusive, of Figure 9. Lines 4 to 8 are included in saved
ASCII files in order to assist users in decoding the third line. Thus, lines 4 to 8 are not required when
creating an ASCII file similar to that of Figure 9 for importing of data to CFA by the "Data Entry
Memu". Evidently, the site depicted in Figure 9 contains historic information. If this site had no historic
information then lines 3 to 5 would be

a3 976.000 o] 0 0.0
33 NUMBER OF OBSERVATIONS
976.00 AREA

Lines 6 to 8 would not be contained in the file, and the remainder would be identical. Lines 9 to the last
in Figure 9 contain the YEAR, MONTH, FLOW data for the 33 years of existing record. Note the first
column of these lines should be the station number. Again, if no historic information was present, then
lines 6 to the last would contain the 33 years of flow data.

4.6 DATA SET DIRECTORY

This menu item offers three choices. The first allows the user to view the station number and
name of all data sets in a CFA master file. The user may obtain a hardcopy of all station numbers and
names on the file or simply view the information on the monitor. The second choice allows the user to
delete unwanted staions from the master file. The third choice allows the user to sort the master file by
station number or station name and in the process, compress the master file. You should compress the
H22FLOOD.DAT file if you delete any stations. This will remove unused space from the indexed file.
The original H22FLOOD.DAT file will be saved as H22FLOOD.BAK. Delete this file if it is
unnecessary.

4.7 SCREEN DATA - GRAPHICAL DISPLAYS AND NONPARAMETRIC TESTING

This menu item allows the user to test the assumption that the sample is a reliable set of
measurements of independent random events from a homogeneous population. The validity of this
assumption can be investigated using the nonparametric tests of the "Screen Data" menu. In addition,
this menu item allows the user to view the data via graphical displays; thus, permitting qualitative
assessments to the suitability and characteristics of the data.
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Nonparametric tests include: 1) the Spearman rank order serial correlation coefficient test for
independence; 2) the Spearman rank order correlation coefficient test for trend; 3) a general randomness
test; and 4) the Mann-Whitney split sample test for homogeneity. Section 3.9 of this report describes
these tests in more detail. The graphical displays include: 1) rank-time plot; 2) discharge-rank plot; 3)
discharge-time plot; 4) frequency histogram by % of maximum discharge; 5) frequency histogram by
month; and 6) frequency histogram by discharge. Examples of the output from these tests are in section
5.2 and 5.3.

Figure 10 shows the "Screen Data Menu" as it should appear on your screen. Note that the
second selection on the menu is the nonparametric tests for independence, trend, and randomness. The
third selection is the homogeneity test. This test was not included with the other nonparametric tests to
allow for a greater freedom when analyzing the data. For example, it would be advantageous to view
and assess a rank-time plot, a discharge-rank plot, and a discharge-time plot before performing a
homogeneity test based on a split sampling by years. A viewing and an assessment of a frequency
histogram by month would be advantageous before performing a homogeneity test based on split-sampling
by season.

CONSOLIDATED FREQUENCY ANALYSIS PACKAGE - SCREEN DATA MENU

Return to main menu of CFA

Independence, trend, and randomness
Homogeneity {Mann-Whitney)

Rank-time plot

Discharge-rank plot

Discharge-time plot

Frequency histogram by % of maximum discharge
Frequency histogram by month

Frequency histogram by discharge

Figure 10: Screen Data Menu of CFA

Menu items: discharge-rank plot; frequency histogram by % of maximum discharge; and
frequency histogram by discharge permit the assessment of the nature of the distribution (unimodal,
bimodal...).

<:CTHL> <P roprmt rhepagesof output you want, note the desired
e pages at once: using SATC MODE - PRINTER QUTPUT. See sections

4.8 FREQUENCY ANALYSIS

This menu item provides a hydrologic frequency analy..; of a typical sample, a sample with
zeros, a sample with low outliers, a sample with historic information, or combinations of the latter three
cases. The user has the choice of performing parametric and/or non-parametric frequency analysis.
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4.8.1 Parametric Frequency Analysis

Outlier analysis is performed automatically. The user has the capability of aitering the number
of low outliers prior to conducting the frequency analysis. The distributions available for conventional
and historical analysis include the generalized extreme value, the three-parameter lognormal, the Log
Pearson Type IIl, and the Wakeby. The Weibull distribution is available for the conventional analysis
of a sample having negative skewness in the untransformed data. Flows corresponding to selected return
periods are computed from the probability function of the given distribution.

The output consists of input data: ranked data and adjusted ranking if historic information is
available; high outliers, low outliers, and zeros identified if present; empirical probabilities; and return
periods. Then follow the sample statistics, the distribution’s parameters and a tabular frequency regime
with a flocd frequency plot.

The program automatically checks if historic information has been given for the site. If a
conventional frequency analysis is to be performed, that is no historic information is present and the
coefficient of skewness of the natural logarithms of the flow series exceeds .4, then the program displays:

"YOUR SAMPLE DISPLAYS A HIGH (>.4) SKEW. YOU SHOULD CHECK FOR HISTORIC
INFORMATION AND ACCURACY."

If a conventional analysis is being performed, the program automatically performs an outlier
analysis on the data sample. If a high outlier is detected, then the program displays:

"...HIGH QUTLIER(S) DETECTED. YOU SHOULD CHECK FOR HISTORIC INFORMATION AND
ACCURACY."

These two comments infer that the data set may contain a typing error, or that the station should
be reviewed for historic information and/or accuracy of the record before proceeding with a frequency
analysis.

If a historic analysis is being performed, the program automatically performs a low outlier
analysis,

Figure 11(a) and 1i(b) show the two menus of parametric distributions. The characteristics of
the data set determines which of the two menus will be displayed on your monitor. The sole difference
between these menus is the Weibull distribution in Figure 11(b). The rules for knowing which one of
the two will appear are:

4] if the data set contains historic information, Figure 11(a) will appear. _

2) if the data set contains no historic data and if the coefficient of skewness of the
untransformed data sample excluding all low outliers is less than zero, then Figure 11(b)
will appear; otherwise, 11(a) will appear.
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| DISTRIBUTION MENU
RETURN TO MAIN MENU OF CFA

Generalized Extreme Value (GEV)
3 Parameter Lognormal {HILO)
LOG Pearson Type [l| {a)
Wakeby

All of the above

Alter number of low outliers

DISTRIBUTION MENU
RETURN TO MAIN MENU OF CFA

Generalized Extreme Value (GEV)
3 Parametsr Lognormal {(HILO)
LOG Pearson Type il {b)
Wakeby

Weibull {Negskew} / Gumbel Il
All of the above

Alter number of low outliers

Figure 11 {a) and {b}): Tha Two Distribution Menus in CFA

4.8.2 Nonparametric Frequency Analysis

This menu item allows the user to determine flood quantiles based on nonparametric frequency
approaches. Section 3.2 and Appendix C should be referred to for more information regarding the
formulation of the technique. Note that outlier analysis is not performed when proceeding with a
nonparametric frequency analysis due to the inherent nature of the technique.

4.9 BATCH MODE - PRINTER OUTPUT

This allows you to print in one batch job the output for the station(s) you are analyzing. When
this option is selected you are first given a list of the stations in your master H22FLQOD.DAT file. You
must TAG the stations you are amalyzing by pressing <F10>. When you have completed tagging
stations press <ENTER>. The menu in Figure 12 then appears.
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. CONSOLIDATED FREQUENCY ANALYSIS PACKAGE - BATCH MENU

Nonparametrics Tests {independence, trend, randomness, homogeneity)
Rank - time plot

Discharge - rank plot

Discharge - time piot

Freguency histogram by % of maximum discharge
Frequency histogram by month

Frequency histogram by discharge

Generalized Extreme Value {GEV)

. 3 Parameter Lognormal {HILO)

Log Pearson Type lli

Wakeby

Weibull (Negskew) / Gumbel (Il

Gauss Kernel (nonparametric}

Figure 12: Batch Print Menu for CFA

You then TAG the output you would like by pressing <F10>. When you have completed
tagging the output press <ENTER>.

higher print dens
._ “minutes per page

The limit for the number of stations that can be analyzed in one batch job is 1000.

Currently, batch mode allows only default settings for plots, i.e. there is no provision for
truncation of plots. If truncation is desired this must be done in interactive mode.
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4.10 MODIFY SET-UP FILE

This allows you to modify set-up parameters initially specified at installation. When this is
selected the following menu appears:

CFA PACKAGE - MODIFY SET_UP FILE MENU
RETURN TO MAIN MENU

CHANGE  Screen Mode

CHANGE  Number of copies
CHANGE  Qutput direction (printer/file)

CHANGE  Default printer
Page size
Printer density
Printer port

“ Graph QOrientation

SAVE Modified file

Figura 13: Modify Set-up Menu for CFA

The printer output direction is not saved in the SET_UP.DAT file. This is a temporary
redirection of output to file. This option allows you to obtain hardcopy output on another system with
a printer without instailing CFA on that system. The output file has to be created for the printer that will
be used to generate the hard copy. The graphic printer output in different runs of CFA will always
number from HALOP**1.GRF, so it will overwrite existing generated graphs. Files must be renamed
to prevent this. The tabular output is sent to a file named by the user. '

Pressing the <ESC> key erases any modifications made without saving the modified file. If
you make some changes and want them to apply only for the current session, then do not SAVE the
modified file. Exit the menu by selecting "RETURN TO MAIN MENU". Selecting "SAVE Modified
File" saves any modifications in the SET UP.DAT file. The changes will be stored for use in the current
and future sessions.
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5. EXAMPLES

5.1 INTRODUCTION

This section contains examples of the output from "Screen Data”, "Parametric Frequency
Analysis” and "Nonparametric Frequency Analysis”. Exampies of both a conventional frequency analysis
and a historical frequency analysis are given. For each case, nonparametric tests and graphical plots of
"Screen Data" are presented and reviewed.

It has been mentioned previously that parametric frequency analysis assumes that the sample to
be analyzed is a reliable set of measurements of independent random events from a homogenous
population, The validity of this assumption can be investigated using the techniques incorporated in
"Screen Data”. Statistical testing and qualitative graphical assessment of the sample should be performed
prior to attempting a frequency analysis.

The output format of the frequency analysis option will differ somewhat, depending on the
presence or absence of zeros, low outliers, and historic information. Note that low outlier information
is not included when nonparametric frequency analysis is being performed. In all cases, the output will
be in three parts. The first part includes a listing of the station identification, input data, ranked data,
empirical probabilities, and return periods. Adjustments are made if historic information is available.
The second part includes the estimates of the parameters of the distribution and a tabular frequency
regime. The third and final output is a titled plot on lognormal probability scale showing the data points
and the plotted function of the distribution in question.

5.2 CONVENTIONAL ANALYSIS - ENGLISH RIVER NEAR SIOUX LOOKOUT - 05QA001

This gauging station was established in 1921 and was discontinued in 1981. A continuous record
of annual maximum daily flows is available from 1922 to 1981, giving a sample of size 60 for analysis,
Table 2 to 12 and Figures 14 to 24 comprise the output for the conventional analysis. Tables 2 to 6 list
the results of the nonparametric tests performed on the flow series. Test results indicate that the data do
not display significant serial dependence or trend. In addition, the data appear random and homogeneous.
Figures 14 to 19 show the graphical analysis available using the "Screen Data Menu". Analysis of these
graphical displays substantiate the nonparametric test results.

Figure 18 shows the histogram for discharge by month. This is a graphical representation of the
number of occurrences of annual maximum mean daily flows for each month. Two distinct groupings
of observations are apparent. They are May to July and September to November. These correspond with
the spring and early summer season and the fall season. Unfortunately, causation factors may not always
be seasonally dependent. However, are these two groups homogeneous? Do they appear as though they
were drawn from the same population? The Mann-Whitney U-test for homogeneity is used in an attempt
to quantitatively answer these two questions. Table 6 lists the results of this test for the groupings
previously described and indicates that no significant location difference in the magnitude of observed
floods was noted. That is, the floods collectively appear homogeneous and as though they were drawn

from the same population; however, this does not negate the possibility that floods from the two seasons
are due to different mechanisms.

Figures 14 and 16 show the rank-time plot and the discharge-time plot of the sample,
respectively, These two graphical displays are used in the qualitative assessment of the data with respect
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to trend or jumps or heteroscedasticity (non-constant variance) or dependence structure. They show no
evidence of trend or heteroscedasticity or jumps. No dependence structure in the flow series is apparent.
These results are in agreement with the findings of the nonparametric tests as listed in Tables 2, 3 and
4. Figure 15 shows no abrupt change in slope, while Figure 17 shows no evidence of an excessively low
or high observation. Figure 19 shows the frequency histogram of the sample, indicating a positively
skewed unimodal distribution.

From the above exercise, the sample appears to fulfil the prerequisite assumptions of frequency
analysis. The sample appears well behaved and there should be no problems in attempting a frequency
analysis.

Table 7 represents the first of three sections of output from the "Frequency Analysis” selection
of the main menu. The first section, after titling gives in the first three columns the month, year, and
magnitude of the flood. The fourth and fifth columns rank the data in descending order of magnitude
and a rank number is assigned, starting with 1 for the largest. The sixth and seventh columns give the
probability of exceedance as a percentage, and the return period in years based on Cunnane’s plotting
position.

Tables 8 to 12 represent the output of the second section. This section, after titling, etc., gives
the best estimates of population mean, standard deviation (S.D.), coefficient of variation (C.V.),
coefficient of skewness (C.S.), and coefficient of kurtosis (C.K.) as estimated from the sample. These
statistics are given for both the sample and its transformation in Naperian logarithms. At this point,
Table 9 is slightly different than the three other tables - Tables 8, 10 and 12. When the boundary
parameter "a" of the three-parameter lognormal distribution has been found, the statistics are repeated
for the In(x-a) series. Table 10 lists the coefficient of skewness of the In(x-a) series as - .056, which is
close to the theoretical value of zero. The coefficient of kurtosis is listed at 2.896, which is close w the
theoretical value of 3.0. This is an indication that a good fit has been obtained for this distribution. In
addition, Tables 8 and 11 are slightly different than Tables 9, 10, 12. These two tables include the first
two L-moments (mean and standard deviation), the ratio of the second to the first (C.V.), the third (C.S.)
and the fourth (C.K.). The L-moment statistics are included only in the summary of statistics for the
generalized extreme value and Wakeby distributions as they are used to obtain parameter estimates for
the conventional sample. The output then includes the sample’s maximum and minimum, the lower
outlier limit (parametric distributions only), the total sample size, the number of low outliers (parametric
distributions only), and the number of zero flows.  The solution method (e.g. moments) is given,
followed by the estimate of the parameters of the distribution. Table 10 indicates that the Log Pearson
Type III distribution is upper-bounded at 105 000. Table 11 shows that the Wakeby distribution is upper
bounded at 2 945. Both of these upper boundaries appear large in comparison with the 500 year event.
A viewing of the frequency plot may give further information as to the practical limitations of the
distribution for this sample. That is, the upper boundary may appear sufficiently large so as to not affect
the shape of the frequency curve in our range of interest. Finally, the tabular flood frequency regime
is given for various preselected return periods and exceedance probabilities,

The third and final section of the output from the frequency analysis menus is the plot on
lognormal probability paper. Figures 20 to 23 show the plot of the floods indicated by an asterisk and
the fitted probability function by a continuous line. Figure 24 shows the nonparametric estimate of the
frequency of the floods where the lower portion of the density is not drawn for return periods below 1.05
years.
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In summary, from a comparison of the output for each frequency distribution, it would appear
that no one parametric distribution gives a superior answer than the next for this sample. The
nonparametric method gives answers similar to those obtained from the parametric approaches. Figure 24
shows the flexibility of the nonparametric approach, especially in the high return period portion of the
graph. One characteristic of this approach is the very small probability of occurrence that exists when
extrapolating beyond the highest observed flood in the sample. This point is illustrated in the example,
but must be kept in mind when estimating floods of high return periods.
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——— SPEARMAN TEST FOR INDEPENDENCE -——

05Qa001 ENGLISH RIVER NEAR SIOUX LCOKOUT
ANNUAL MAXIMUM DAILY FLOW SERIES 1922 TO 1981 DRAINAGE AREA = 13570.00

SPEARMAN RANK ORDER SERIAL CORRELATION COEFF
CORRESPONDS TO STUDENTS T
CRITICARL T VALUE AT 5% LEVEL

- - - - 1% -

.103 D.F.= 57
.782
1.673 NOT SIGNIFICANT N
2,395 NOT SIGNIFICANT

Interpretation: The null hypothesis is that the correlation is zero.

At the 5% level of significance, the correlation is not significantly
different from zero. That is, the data do not display significant
gserial dependence.

Table 2: QOutput of CFA for the Spearman rank order serial correlation coefficient as a test of
the independence of the annual maximum daily flows of the English River near Sioux
Lookout - 05QA001.

——— SPEARMAN TEST FOR TREND --—-

05QA001 ENGLISH RIVER NEAR SIOUX LOOKOUT
ANNUAL MAXIMUM DAILY FLOW SERIES 1922 TO 1981 DRAINAGE AREA = 13570.00

SPEARMAN RANK ORDER CORRELATION COEFF -.117 D.F.= 58

CORRESPONDS TO STUDENTS T -.898
CRITICAL T VALUE AT 5% LEVEL =-2.,002 NOT SIGNIFICANT
- - - - 1% - =-2.664 NOT SIGNIFICANT

Interpretation: The null hypothedis is that the serial{lag-one) correlation
is zero.

At the 5% level of significance, the correlation is not significantly
different from zerc. That is, the data do not display significant

trend.
Table 3: Output of CFA for the Spearman rank order serial correlation coefficient as a test of
the trend of the annual maximum daily flows of the English River near Sioux Lookout
- 05QA001.
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—-—- RUN TEST FOR GENERAL RANDOMNESS -—-

05QA001 ENGLISH RIVER NEAR SIOUX LOOKCOUT
ANNUAL MAXIMUM DAILY FLOW SERIES 1922 TO 1981 DRAINAGE AREA = 13570.00

THE NUMBER OF RUNS ABOVE AND BELOW THE MEDIAN (RUNAB) = 29
THE NUMBER OF OBSERVATIONS ABOVE THE MEDIAN(N1) = 30
THE NUMBER OF OBSERVATIONS BELOW THE MEDIAN(N2) = 30
{NOTE: Z IS5 THE STANDARD NORMAL VARIATE.)
For this test, Z = .521
Critical Z value at the 5% level = 1.960 NOT SIGNIFICANT

Interpretation: The null hypothesis is that the data are random.

At the 5% level of significance, the null hypothesis cannot be
rejected. That is, the sample is significantly random.

Table 4: Output of CFA for the run test for general randomness of the annual maximum daily
flows of the English River near Sioux Lookout - 05QAQQ1,

==- MANN-WHITNEY SPLIT SRMPLE TEST FOR HOMOGENEITY -—-

05QACO1l ENGLISH RIVER NEAR SIOUX LOOKOUT
ANNUAL MAXIMUM FLOW SERIES 1922 TO 1581 | DRAINAGE AREA= 13570.00

SPLIT BY TIME SPAN, SUBSAMPLE 1 SAMPLE SIZE= 29
SUBSBEMPLE 2 SAMPLE SIZE= 31

(NOTE: Z IS THE STANDARD NORMAL VARIATE.)

For this test, 2 = -.777
CRITICAL Z VALUE AT 5% SIGNIFICANT LEVEL = -1.645 NOT SIGNIFICANT
- - - - 1% - - = =2,326 NOT SIGNIFICANT

Interpretation: The null hypothesis is that there is no
location difference between the two samples.

At the 5% level of significance, there is no significant
location difference between the two samples. That is, they
appear to be from the same population.

Table 5: Output of CFA for the Mann-Whitney split sample test for homogeneity of the annual
maximum daily flows of the English River near Sioux Lookout - 05QA001.
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——— MANN-WHITNEY SPLIT SAMPLE TEST FOR HOMOGENEITY -—-

05Qa001 ENGLISH RIVER NEAR SIOUX LOOQOROUT
ANNUAL MAXTMUM FLOW SERIES 1922 To 1981 DRAINRGE AREA= 13570.00

SEASONAL SPLIT, SUBSAMPLE 1 IS AUG THROUGH APR SAMPLE SIZE= ¢
SUBSAMPLE 2 IS5 MAY THROUGH JUL SAMPLE SIZE= 51

(NOTE: Z IS8 THE STANDARD NORMAL VARIATE.)

For this test, 2 = -.704
CRITICAL Z VALUE AT 5% SIGNIFICANT LEVEL = -1.645 NOT SIGNIFICANT
- - - - 1% - - = =2.3286 NOT SIGNIFICANT

Interpretation: The null hypothesis is that there is nc location
difference between the two samples.

At the 5% level of significance, there is no significant location
difference between the two samples. That is, they appear to be from the
same population.

Table 6: Output of CFA for the Mann-Whitney split sample test for the homogeneity of the
seasonal occurrences of the annual maximum daily flows of the English River near
Sioux Lookout - 05QA001.
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Rank (Descending Order of Magnitude) Versus Time

05QA001 ENGLISH RIVER NEAR SIOQUX LOOKQUT
Reference Period: 1922 to 1981

Rank
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Figure 14: Qutput of CFA showing the rank-time plot for the English River near Sioux Lookout -
05QA001
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Discharge (Descending Order of Magnitude) versus Rank

05QA001 ENGLISH RIVER NEAR SIOUX LOOKOUT
Reference Period: 1922 to 1981
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Figure 15: Output of CFA showing the discharge-rank plot for the English River near Sioux
Lookout - 05QA001
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Discharge versus Time

05QA001 ENGLISH RIVER NEAR SIOUX LOOKOUT
Reference Period: 1922 to 1981
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Figure 16: Output of CFA showing the annual maximum daily discharge-time plot for the English

River near Sioux Lookout - 05QA001
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Histogram for Discharge by » Maximum Discharge

05QA001 ENGLISH RIVER NEAR SIOUX LOOKOUT
3 Reference Period: 1922 to 1981 60 Observations
o

16.0

Occurrences
12.0
i

8.00

4.00

0 20 30 40 50 60 70 60
% Maximum Discharge

Figure 17: Output of CFA showing the histogram for discharge by % maximum discharge for the
English River near Sioux Lookout - 05QA001 '
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Histogram for Discharge by Month

05QA001 ENGLISH RIVER NEAR SIOUX LOOKOUT
3 Reference Period: 1922 to 1981 60 Observations 1922 to 1981
N

23
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Figure 18: Output of CFA showing the histogram for discharge by month for the English River
near Sioux Lookout - 05QA001
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Histogram for Discharge

05QA001 ENGLISH RIVER NEAR SIOUX LOOKOQUT
3 Reference Period: 1922 to 1981 80 Observations
=¥} -

16.0 20.0

Occurances
12.0

8.00

4.00

85 175 264 354 443 532 622 711

Discharge

Figure 19: Output of CFA showing the histogram for discharge for the English River near Sioux
Lookout - 05QA001 :
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WSC STATION NO=05QA001
WSC STATION NAME=ENGLISH RIVER NEAR SIOUX LOOKOUT
MONTH YEAR DATA ORDERED RANK PROB. RET. PERIOD

{1} (2} (3) {4) {5) (&) {7)
(%) {YEARS)
5 1922 195.0Q0 711.000 1 1.00 100.333
5 1923 172.000 651.000 2 2,66 37.625
6 1924 111.Q000 614.000 3 4,32 23.154
& 1925 243,000 583,000 4 5.98 16.722
1C 1926 264.000 544.000 5 7.64 13,087
5 1927 583.000 484.000 6 9.30 10.750
9 1928 224.000 470.000 7 10.96 9.121
7 1929 149.000 442,000 8 12.62 7.921
7 1930 88.300 436.000 5 14.29 7.0Q0
7 1931 131.000 430.000 10 15.595 6.271
5 1532 331.000 402 .000 11 17.61 5.679
& 1933 220.000 394,000 12 19.27 5.190
6 1934 470.000 379.000 13 20.93 4.778
5 1935 272,000 371.00Q 14 22.59 4.426
5 1936 242.000 365.000 15 24.25 4.123
6 1237 309.000 365.000 18 25.91 3.859
5 1938 251.000 357.000 17 27.57 3.627
7 1939 129.000 334.000 18 29.24 3.420
7 1940 85.500 334.000 19 30.90 3.237
10 1941 614.000 331.000 20 32.56 3.071
1 1942 158.000 309.000 21 34.22 2.922
7 1943 402,000 309.000 22 35.88 2.787
6 1944 269.000 306.000 23 37.54 2.664
5 1945 193.000 272.000 24 39.20 2.551
5 1946 365.000 272,000 25 40.86 2.447
6 1947 306.000 269.000 26 42.52 . 2.352
5 1948 260.000 264.000 27 44.19 2.263
5 1949 215.000 264.000 28 45.85 2.181
6 1350 651.000 260.000 29 47.51 2.108
6 1951 394,000 252.000 30 49.17 2.034
7 1952 334.000 251.000 31 50.83 1.967
7 1953 357.000 249.000 32 52.49 1.905
6 1954 711.000 249,000 33 54.15 1.847
6 1955 242.000 243,000 34 55.81 1.792
6 1956 436.000 242.000 35 57.48 1.740
5 1957 249.000 242.000 36 59.14 1.691
10 1958 16%.000 234.000 37 60.80 1.645
) 1959 334.000 230.000 38 62.46 1.601
& 1960 230.000 225.000 39 64.12 1.560
6 1961 219.000 224,000 40 65.78 1.520
9 1962 234.000 220.000 41 67.44 1.483
7 1963 252.000 219.000 42 69.10 1.447
5 1964 365.000 215.000 43 70.76 1.413
6 1965 249,000 201.000 44 72.43 1.381
6 1966 484.000 200.000 45 74.09 1.350
- 6 1967 264.000 195.000 46 75.75 1.320
6 1968 442,000 1$3.000 47 77.41 1.292
6 1969 371.000 172.000 48 79.07 1.265

Table 7: Output of CFA listing the station’s flows, ranked flows, probability, and return period

as obtained from the Cunnane formula for the English River near Sioux Lookout -

. 05QA001.
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WSC STATION NO=0S5QAR001
WSC STATION NAME=ENGLISH RIVER NEAR SIOUX LOOKOUT
MONTH YEAR DATA QRDERED RANK PROE. RET. PERIOD
(1) (2) (3) (4) (5) (6) (7)
(%) (YEARS)
6 1970 379.000 169.000 49 80.73 1.239
11 1971 430.000 158.000 S0 82.39 1.214
1 1972 225,000 150.000 51 84.05 1.190
10 1973 147.000 149.000 52 85.71 1.167
6 1974 544.000 147.000 53 87.38 1.144
5 1975 200.000 131.000 54 89.04 1.123
5 1976 201.000 129.000 5% 50Q0.70 1.103
7 1977 125.000 125.000 56 92.36 1.083
6 1978 309.000 116.000 57 94.02 1.064
5 1979 272.000 111.000 58 95.68 1.045
5 1980 116.000 88.300 59 97.34 1.027
7 1981 150.000 85.500 60 99.00 1.010

Table 7 continued
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FREQUENCY ANALYSIS - GENERALIZED EXTREME VALUE DISTRIBUTION
0503001 ENGLISH RIVER NEAR SIOUX LOOKOUT

SAMPLE STATISTICS

MEAN s.D. c.V. C.8. C.K.

X SERIES 288.947 140.700 -487 1.058 4.105

LN X SERIES 5.554 -485 .087 -.124 2.936

L-MOM RATIO 288,947 76.800 .266 .212 .166

Z(MIN)= 85.500 TOTAL SAMPLE SIZE= 60

I(MAX)= 711.000 NO. OF LOW OUTLIERS= 0

LOWER OUTLIER LIMIT OF X= 65.260 NO. OF ZERO FLOWS= 0
SOLUTION OBTAINED VIA L - MOMENTS

GEV PARAMETERS: U= 221.45 A= 103.646 K= —-.070

RETURN
PERIOD

1.003
1.080
1.250
2.000
5.000
10.000
20.000
50.000
100.000
200.000
500.000

FLOOD FREQUENCY REGIME

EXCEEDANCE
PROBABILITY

.997
.952
-800
. 500
. 200
. 100
.050
-020
.010
. 005
.002

FLOOD

49.8
110
173
260
385
474
564
886
784
886

1030

Table 8:

Qutput of CFA listing the summary statistics of the sample, the solution method, the
estimated parameters of the distribution, and the tabular flood frequency regime of the
English River near Sioux Lookout (05QA001) for the generalized extreme value

distribution.
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FREQUENCY ANALYSIS = THREE-PARRMETER LOGNORMAI, DISTRIBUTION
O5QA001 ENGLISH RIVER NEAR SIOUX LOOKOUT

SAMPLE STATISTICS

MEAN 5.D. C.V. C.8. C.K. .
X SERIES 288.947 140.700 -487 1.058 4.105
LN X SERIES 5.554 485 .087 -.124 2.936
LN(X-A) SERIES 5.611 .458 .082 ~.056 2.896
X(MIN)= 85.500 TOTAL SAMPLE SIZE= &0
X({MAX)= 711.000 NO. OF LOW OUTLIERS= 0
LOWER OUTLIER LIMIT OF X= 65.260 NC. OF ZERC FLOWS= 0]

SOLUTION OBTAINED VIA MAXIMUM LIKELIHOOD

3LN PARBMETERS: A

-13.726 M= 5.611 5= .458

FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY

1.003 .997 64.0
1.0580 .952 114
1.250 .800 172
2.000 .500 260
5.000 . 200 388
10.000 : . 100 : 478
20.000 .050 567
50.000 .020 &86
100.000 .010 779
200.000 .00% 87%
500.000 .02 1010

Table 9; Output of CFA listing the summary statistics of the sample, the solution method, the

estimated parameters of the distribution, and the tabular flood frequency tegime of the
English River near Sioux Lookout (05QAQ0Q1) for the three-parameter lognormal
distribution.
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FREQUENCY ANALYSIS — LOG PEARSON TYPE III DISTRIBUTION
05QA001 ENGLISH RIVER NERR SIOUX LOOQKOUT

SAMPLE STATISTICS

MEAN S.D. c.v. c.s. c.K.

X SERIES 288,947 140.700 .487 1.058 4.105
LN X SERIES 5.554 . 485 .087 -.124 2.936
X (MIN)= 85,500 TOTAL SAMPLE SIZE= &0
X ({MAX)= 711.000 NO. OF LOW OUTLIERS= O
LOWER OUTLIER LIMIT OF X= 65,260 NO. OF ZERO FLOWS= 0

SOLUTION CBTAINED VIA MAXIMUM LIKELIHOOD

DISTRIBUTION IS UPPER BOUNDED AT M= .10S50E+06
LP3 PRRAMETERS: A= -.3852E-01 B= 156.0 LOG{M)= 11.586
M = .1050E+06

FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY

1.003 .997 63.2
1.050 .952 113
1.250 .800 173
2.000 .500 261
5.000 .200 ]-1-]
10.000 .100 474
20.000 .050 557
50.000 .020 665
100.000 .010 747
200.000 .005 829
500.000 .002 940

Table 10: Output of CFA listing the summary statistics of the sample, the solution method, the

estimated parameters of the distribution, and the tabular flood frequency regime of the
English River near Sioux Lookout (05QA001) for the Log Pearson Type III
distribution. _ '
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FREQUENCY ANALYSIS - WAKEBY DISTRIBUTICN )
05QA001 ENGLISH RIVER NEAR SIOUX LOOROUT

SAMPLE STATISTICS

MEAN 5.D. C.V. c.s. C.K.

X SERIES 288.947 140.700 .487 1.058 4.105

LN X SERIES 5.554 .485 .087 -.12a 2.936
L-MOM RATIO 288.947 76.800 .266 .212 .166
X(MIN)= 85.500 TOTAL SAMPLE SIZE= 60
X (MAX}= 711.000 NO. OF LOW QUTLIERS= O
LOWER OUTLIER LIMIT OF X= 65,260 NO. OF ZERO FLOWS= 0O

THE FOLLOWING WAKEBY PARAMETERS WERE OBTAINED VIA L-MOMENTS

M= 58.043 A= 96.191 B= 10.18 C= -2790.846 D= -.054
DISTRIBUTION IS UPPER BOUNDED AT E= .294SE+04

FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY

1.003 .997 61.4
1.050 .5952 103
1.250 . 800 178
2.Q000 .500 257
5.000 .200 387
10.000 .100 481
20.000 .050 572
50.000 .020 687
100.000 010 770
20C.000 .008 850
500.000 .002 952

Table 11: Output of CFA listing the summary statistics of the sample, the solution method, the

estimated parameters of the distribution, and the tabular flood frequency regime of the
English River near Sioux Lookout (05QA001) for the Wakeby distribution.
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FREQUENCY ANALYSIS = NONPARRMETRIC METHOD
0SQADO1 ENGLISH RIVER NEAR SIOUX LOOKOUT
SAMPLE STATISTICS
MEAN 5.D. c.v. c.s. c.K.
X SERIES 288,947 140.700 .487 1.058 4.105
LN X SERIES 5.554 .485 .087 -.124 2.936
X(MIN)= 85.500 TOTAL SAMPLE SIZE= 60
X {MAX)= 711.000 NO. OF ZERO FLOWS= 0
SMOOTHING PARAMETER H =  52.130
FLOOD FREQUENCY REGIME
RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY
1.003 .997 3.25
1.050 .952 86.1
1.2580 .800 167
2.000 .500 263
5.000 -200 399
10.000 .100 495
. 20,000 .050 598
50.000 .020 677
100.000 .010 716
200.000 .005 745
500.000 .002 775
Table 12: Output of CFA listing the summary statistics of the sample, the computed smoothing

parameter H, and the tabular flood frequency regime of the English River near Sioux
Lookout (03QA001) for the Nonparametric Method.
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Flood Frequency - Generalized Extreme Value Distribution
05QA001 ENGLISH RIVER NEAR SIOUX LOOKQUT

ﬁé FParameters Estimated by L - Moments
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Output of CFA showing the frequency plot based on the generalized extreme value

Figure 20:
distribution for the English River near Sioux Lookout - 03QA001
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Flood Frequency - Three Parameter Lognormal Distribution
05QA001 ENGLISH RIVER NEAR SIOUX LOOKOUT

‘Z: Parameters Estimated by Maximum Likelihood
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Figure 21; Output of CFA showing the frequency plot based on the three-parameter lognormal
distribution for the English River near Sioux Lookout - 05QA001
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Flood Frequency - Log Pearson Type III Distribution

05QA001 ENGLISH RIVER NEAR SIOUX LOOKQUT
Parameters Estimated by Maximum Likelihood
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Output of CFA showing frequency plot based on the Log-Pearson Type III distribution for

Figure 22;
the English River near Sioux Lookout - 05QA001
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Flood Frequency - Wakeby Distribution

05QA001 ENGLISH RIVER NEAR SIOUX LOOKOUT

0'3: Parameters Estimated by L - Moments
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Figure 23: Output of CFA showing the frequency piot based on the Wakeby distribution for the English
River near Sioux Lookout - 05QA001
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Flood Frequency — Nonparametric Method
05QA001 ENGLISH RIVERE NEAR SIOUX LOOKOUT
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Figure 24: QOutput of CFA showing the frequency plot based on Nonparametric Method for the English
River near Sioux Lookout - 05QA001
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5.3  HISTORICAL ANALYSIS - BOYNE RIVER NEAR CARMAN - O350F003

The Boyne River near Carman gauging station was established in 1919 and was still active in
1982, although the annual floods for the years 1920, 1921, 1923 through 1926, 1929, and 1931 through

1955 are missing. There is also historic information that a flood of 1 897 m?/s occurred in 1893 and is
the largest on record.

Tables 13 to 22 and Figures 25 to 35 comprise the output for the historical analysis. Tables {3
to 16 list the results of the nonparametric tests performed on the series. Summaries of the statistical

analysis are provided in each of these tables. Figures 25 to 30 show the graphical analysis available using
the "Screen Data Menu".

Figure 29 shows the histogram for discharge by month. There appears only one grouping of
observations in Figure 29, thus no homogeneity test based on second groupings is performed. Figures 25
and 27 shows little evidence of trend or heteroscedasticity in the series, although figure 27 does show an
increasing trend in the annual maximum discharges from 1963 to about 1970. Table 16 summarizes the
results of a Mann-Whitney U-test performed on the annual maximum daily flows of 1893 to 1965 and
1966 to 1982. No significant location difference was found. That is, the two samples appear to have
been drawn from the same population. In addition, the nonparametric tests summarized in Tables 13 and
14 found no significant dependency or trend in the sample. However, Figure 26 shows an abrupt change
in shape between ranks 4 and 5. Such an abrupt change may indicate the existence of mixed populations
and/or the presence of historic highs. The causation factors for the floods above and below the break
may be different. A distinct break in the slope of the line is an indicator that the frequency distributions
of this program may not fit the sample well if historic information is not found for the high flow values.
In addition, the lowest ranked observation dips below the trend of the line. This point later proves to be
a low outlier based on the Grubbs and Beck test. Nonparametric frequency analysis may yield superior
results in such cases. Also, note that the outlier analysis is not performed when this approach is taken.

Note that the ranks of Figures 25 and 26 are not adjusted for historic information. If observations

in the series have floods of equal size, they are given a tied adjusted rank value equal to the arithmetic
average of their unadjusted ranks:

e.g. Flood Rank Adjusted Rank
1 300 20 20
1 200 21 et [ 21.5
1 200 22 L 21.5
1 100 23 23
1 000 24] [ 25
1 000 25 e 25
1 000 26 | 25
800 27 27
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Figure 28 shows the histogram for discharge by % of the maximum discharge. This plot shows
that the maximum observed flood is much larger than the remainder of the sample. Figure 30 shows the
conventional histogram for discharge. The sample appears positively skewed with the maximum flood
being located quite distant from the remainder of the sample. This usually is an indication that the sample
has a high outlier and that the skewness will be significantly different from zero. In such a case, the data
should be checked for accuracy. If the maximum observation is not erroneous, then this flood should
be investigated for historic significance. It may be recalled that historic information was found for this
event. Unfortunately, Figure 30 does not display a classical unimodal histogram. This is not surprising
due to the low number of observations available (33) for histogram construction.

Table 17 represents the first of three sections of output from the "Frequency Analysis” selection
of the main menu, The first section, after titling, gives information on the censoring parameters that
were described in Section 3.6. Relating them to the example: since the 1893 flood was the largest
known from 1893 to 1982, the total time span, YT of the analysis is 90 years, and since no flood during
that period exceeded 187 m®/s, the censoring threshold is 187 m%/s. The number of observed peaks is
N = 33. The three aforementioned censoring parameters should be carefully checked as the computations
will be affected if they have been wrongly entered. Since there is only one historic peak above the
threshold, NHA = 1. The remaining information about the sample, such as the observed peaks above
the threshold, NA, observed peaks below the threshold, NB, and the missing peaks below the threshold,
NC, are all calculated by the program.

The first three columns of Table 17 give the month, year, and magnitude of the flood. The fourth
and fifth columns rank the data in descending order of magnitude and a rank number is assigned, starting
with 1 for the largest. Column (6) assigns an adjusted rank as suggested by Benson (1950). Columns
(7) and (8) give the empirical values of exceedance probability and return period according to Cunnane
(1978). Note that the lowest observed flood has been identified as a low outlier, and is denoted by an
asterisk, :

The second section of the output is listed in Tables 18 to 22. This section gives the values of the
population moments as estimated from the sample of fully specified floods only. They are given for the
untransformed variate and its logarithmic transform. If the output is for the generalized extreme value
and Wakeby distributions, then the L-moments and L-moment ratios are given for the sample. If the
output is for the three-parameter lognormal distribution, then the logarithmic transform with the lower
boundary parameter is also given. Next comes the sample’s minimum and maximum values, the lower
outlier limit, the total sample size, the number of low outliers (not given for the nonparametric method),
and the number of zero flows. The solution method (e.g. moments) is given, followed by the estimate
of the parameters of the distribution. Table 21 lists that the Wakeby distribution is upper bounded at 416
This upper boundary appears large in comparison with the 500 year event, The frequency plot, shown
in Figure 34, can be used to glean further information as to the practical limitations of the distribution
for this sample. The upper boundary does not appear to affect the shape of the frequency curve in our
range of interest. Finally, the tabular flood frequency regime is given for various preselected return
periods and exceedanc. probabilities.

The third and final section of the output consists of the plots of the frequency distributions and
nonparametric density estimates on lognormal probability scale. Figures 31 to 35 shows these plots for
our example. Note that the cumulative density plot of Figure 35 has been suppressed for return periods
less than 1.05 years.
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The generalized extreme value and the Wakeby distributions and the nonparametric method give
similar design floods for the higher return periods. The three-parameter lognormal and the Log Pearson
Type III, as well, give similar design floods for the higher return periods. However, both of these
groups give distinctively different results. The upper bound on the Wakeby is 416, while the 500 year
event for the second group is 409. Thus, a more conservative estimate of the extreme events is obtained
using the three-parameter lognormal and the Log Pearson Type I1I distributions for this sample. (Note
that more conservative does not imply more accurate nor better.)

However, at this point it would be beneficial to review Figure 26, which shows the "Screen Data”
display of discharge versus rank. Remember, that an abrupt change in the slope of the line was noted
between ranks 4 and 5. Table 17 lists the ordered data, and it is evident that the four highest floods are
quite different in magnitude than the remainder of the sample.

The fourth highest flood occurred in 1970 and represents the highest recorded flood to that point
in time, except for the historic event of 1893, An investigation found that the flood of 1970 was indeed
the worst event since that of 1893, This additional historic information permits the censoring threshold,
X_, to be lowered to 105 m*/s from 187 m3/s. Four floods are then larger than or equal to the new
censoring threshold.

An analysis with the additional historic information was performed. Table 23 lists the station's
flows, probability, and return periods. Note how the historic adjustment is different from that of Table
17 due to the lowering of the censoring threshold. Tables 24 through 28 list the estimates of the
parameters based on the additional historic information and certain information of the Wakeby
distribution. Note that the Wakeby distribution is unbounded above when the censoring threshold is 105
m°>/s, but is bounded above when the censoring threshold is 187 m?/s.

Figures 36 through 40 show the plots of the frequency distributions and nonparametric methods
on lognormal probability scale. Note that the lower portion of the cumulative frequency curve of Figure
36 is suppressed at 1.1 years and Figure 40 at 1.05 years so that the number of cycles in the figures
remains constant. From a visual inspection of these figures and the flood frequency regimes of Tables
24 o 28, it is obvious that the T-year flood estimates of the different distributions correspond more
closely than when the censoring threshold was set at 187 m’/s. In addition, the refinement of the historic
information has yield distributions that more closely resemble the estimated plotting positions of the data.
Figure 36 shows that the generalized extreme value distribution may be underestimating the extreme
events. Figure 37 shows that the three-parameter lognormal distribution may be slightly overestimating
the extreme T-year floods, while Figure 38 shows that the Log Pearson Type III distribution corresponds
very clearly with the plotted data. The Wakeby plot, shown in Figure 39, appears to be slightly under
the extreme data: Figure 40 shows the nonparametric frequency plot. This method again appears to give
poor estimates beyond the probability associated with the largest flood. In this case, the nonparametric
approach appears to underestimate the design floods for return periods of larger than 150 years, however,
the flexibility of the nonparametric density is evident. The estimates of the 100-year flood for these four
distributions and the nonparametric approach are 138, 185, 171, 162, and 181 m'/s, respectively.

Statistical frequency analysis assumes that the sample to be analyzed is a reliable set of
measurements of independent random events from a homegeous population. The analyst should be
cautious that climate or land-use changes may go undetected during the ungauged portion of the historic
record. A non-homogenous or time-variant sample may result from such causation factors, possibly
invalidating the historic frequency analysis. It could be postulated that for non-homogenous or mixed
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distributions that the Wakeby and, in particular, the nonparametric method would yield more accurate
estimates of flood quantiles than those obtained by use of the three parameter distribution.
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——— SPEARMAN TEST FOR INDEPENDENCE ---

050F003 BOYNE RIVER NEAR CARMAN
ANNUAL MAXIMUM DAILY FLOW SERIES 1893 TO 1982 DRAINAGE AREA = 976.0000

SPERRMAN RANK ORDER SERIAL CORRELATION COEFF .100 D.F.= 25

CORRESPONDS TO STUDENTS T = .500
CRITICAL T VALUE AT 5% LEVEL = 1.708 NOT SIGNIFICANT
- - - - 1% - = 2.485 NOT SIGNIFICANT

Interpretation: The null hypothesis is that the correlation is zero.

At the 5% level of significance, the correlation is not significantly
different from zero. That is, the data do not display significant
aerial dependence.

Table 13: Output of CFA for the Spearman rank order serial correlation coefficient as a test of

the independence of the annual maximum daily flows of the Boyne River near Carman
- 050F003.

=== SPEARMAN TEST FOR TREND -——-

050FQ03 BOYNE RIVER NEAR CARMAN
ANNUAL MAXIMUM DAILY FLOW SERIES 1893 TO 1982 DRAINAGE AREA = 976.0000

SPEARMAN RANK ORDER CORRELATION COEFF -138 D.F.= 31

CORRESPONDS TO STUDENTS T = .778
CRITICAL T VALUE AT 5% LEVEL = 2,040 NOT SIGNIFICANT
- - - - 1% - = 2.745 NOT SIGNIFICANT

Interpretation: The null hypothesis is that the serial(lag-one) correlation
is zero.

At the 5% level of significance, the correlation is not significantly

different from zerc. That is, the data do not display significant
trend.

Table 14; Output of CFA for the Spearman rank order serial correlation coefficient as a test of

the trend of the annual maximum daily flows of the Boyne River near Carman -
050F003.

Page 59



EXAMPLES

--—~ RUN TEST FOR GENERAL RANDOMNESS --- )

050F003 BOYNE RIVER NEAR CARMAN
ANNUAL MAXIMUM DAILY FLOW SERIES 1893 TC 1982 DRAINAGE AREA = 976.0000

THE NUMBER OF RUNS ABOVE AND BELOW THE MEDIAN (RUNAB) = 18

THE NUMBER OF OBSERVATIONS ABOVE THE MEDIAN(N1l) = 16

THE NUMBER OF OBSERVATIONS BELOW THE MEDIAN(N2) = 16 "
Range at S% level of significance: 12. to 22. NOT SIGNIFICANT

Interpretation: The null hypothesis is that the data are random.

At the 5% level of significance, the null hypothesis cannot be
rejected. That is, the sample ia asignificantly random.

Table 15: Output of CFA for the run test for general randomness of the annual maximum daily
flows of the Boyne River near Carman - 050F003.

~=w= MANN-WHITNEY SPLIT SAMPLE TEST FOR HOMOGENEITY —-——

050F003 BOYNE RIVER NEAR CARMAN :
ANNUAL MAXIMUM FLOW SERIES 1893 TOo 1982 DRAINAGE ARER= 976.0000

SPLIT BY TIME SPAN, SUBSAMPLE 1 SAMPLE SIZE= 16
SUBSAMPLE 2 SAMFLE SIZE= 17

MANN-WHITNEY U = 131.0
CRITICAL U VALUE AT 5% SIGNIFICANT LEVEL = 89.0 NOT SIGNIFICANT
- - - - - 1% - - = 71.0 NOT SIGNIFICANT

Interpretation: The null hypothesis is that there is no
location difference bhetween the two samples.

At the 5% level of significance, there is no significant
location difference between the two samples. That is, they
appear to be from the same population.

Table 16: Qutput of CFA for the Mann-Whitney split sample test for homogeneity of the annual
maximum daily flows of the Boyne River near Carman - 050F003. ’
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Rank (Descending Order of Magnitude) Versus Time

050F003 BOYNE RIVER NEAR CARMAN
Reference Period: 1893 to 1982
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Figure 25: Output of CFA showing the rank-time plot for the Boyne River near Carman - 050F003
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Discharge (Descending Order of Magnitude) versus Rank

050F003 BOYNE RIVER WNEAR CARMAN
Reference Period: 1893 to 1982
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Figure 26: Output of CFA showing the discharge-rank plot for the Boyne River near Carman .
050F003 .
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Discharge versus Time

050F003 BOYNE RIVER NEAR CARMAN
Reference Period: 1893 to 1982
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Figure 27: Output of CFA showing the annual maximum daily discharge-time plot for the Boyne River
near Carman - 05OF003
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Histogram for Discharge by % Maximum Discharge

050F003 BOYNE RIVER NEAR CARMAN

:’5 Reference Period: 1893 to 1582 33 Observations
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Figure 28: Output of CFA showing the histogram for discharge by % maximum discharge for the
Boyne River near Carman - 050F003 .
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Histogram for Discharge by Month

050F003 BOYNE RIVER NEAR CARMAN
< Reference Period: 1893 to 1982 33 QObservations 1893 to 1982
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Figure 29: Output of CFA showing the histogram for discharge by month for the Boyne River near
Carman - 0SOF003
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Histogram for Discharge
050F003 BOYNE RIVER NEAR CARMAN

2 Reference Period: 1893 to 1982 33 Observations
E -
17
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Figure 30: Output of CFA showing the histogram for discharge for the Boyne River near Carman -
050F003 .
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WSC STATION NO=050F003
WSC STATION NAME=BOYNE RIVER NEAR CARMAN

(1)

&

AL LN ERELAROOBDRRLENLRWAESRAWRE BT AL

TOTAL TIME SPAN,

MONTH YEAR

(2)
1893

1919
1922
1927
1928
1930
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1582

OBSERVED PEAKS ABOVE THRESHOLD,
OBSERVED PEAKS BELOW THRESHOLD,
MISSING PEAKS BELOW THRESHOLD,

FLOOD
{3)
187.000

13.500
15.300

29.700 .

12.600
34.000
56.100
10.800
6.090
14.900
43.000
19.400
38.800
14.500
13,900
59.500
55.200
37.900
© 35.700
6%.7C00
ics.000
54.100C
19. 300
1.180
132.000
11.400
34.800
7.390
23.800
119.000
10.700
5.470
6.530

¥T= 90 ¥YRS.

DESCENDING RANK
ORDER M
(4) (5)
187,000 1
THRESHOLD

132.000 2
119.000 3
105.000 4
69.700 5
§5.500 6
56.100 7
55.200 8
54.100 9
43.000 10
38.800 11
37.900 12
© 35.700 13
34.800 14
34.000 15
29.700 16
23.800 17
19.400 18
19,300 19
15.300 20
14.900 21
14.500 22
13.900 23
13.500 24
12.600 25
11.400 26
10.800 27
10.700 28
7.390 29
6.530 Jo
6.090 Jl
5.470 32
1.180* a3

FLOW THRESHOLD =
OBSERVED PEAKS, N= 33 HISTORIC PEAKS ABOVE THRESHOLD, NHA= 1

Na= 1
NB= 32
NC= 57

RANK
ADJ.

(6)
1.00

3.78

6.56

9.34
12.13
14.91
17.69
20,47
23.25
26.03
28.81
31.59
34.38
37.186
39.94
42.72
45.50
48.28
51.06
53.84
56.63
59.41
62.19
64.97
67.75
70.53
73.31
76.09
78.88
81.66
84.44
87.22
90.00

187.000

CUM.
PROB.

(7}
.67

3.75

6£.83

9.92
13.00
16.08
19.17
22.25
25.33
28.42
31.50
34.58
37.67
40.75
43.83
46.92
50.00
£3.08
56.17
59.25%
62.33
65.42
68.50
71.88
74.67
77.75
80.83
83.92
87.00
20.08
93.17
96.25
99.233

RET.PERIOD

YEARS
(8)

150.33

26.68
14.64
10.09
7.69
6.22
5.22
4.4%9
3.95
3.82
3.17
2.89
2.65
2.45
2.28
2.13
2.00
1.88
1.78
1.69
1.60
1.53
1.46
1.40
1.34
1.29
1.24
1.19
1.15
1.11
1.067
1.04
1.01

Table 17:

Output of CFA listing the station’s flows, ranked flows, probability, and return period as
obtained from the Cunnane formula for the Boyne River near Carman (050F003), using a
censoring threshold of 187 m’/s.
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HISTORICAL FREQUENCY ANALYSIS - GENERALIZED EXTREME VALUE DISTRIBUTION
050F003 BOYNE RIVER NEAR CARMAN

SAMPLE STATISTICS

MERN 8.D. c.v. C.8. C.K.

X SERIES 39.341 41.975 1.067 2.009 7.540 -
LN X SERIES 3.173 1.076 .339 -.364 3.887
L-MOM RATIO 39,341 20.549 .522 .430 .235
X{MIN)= 1.180 TOTAL SAMPLE SIZE= 33
X{MAX)= 187.000 NO. OF LOW QUTLIERS= 1
LOWER OUTLIER LIMIT OF X= 1.452 NO. OF ZERO FLOWS= o]

AFTER REMOVAL OF ZEROES AND/OR LOW OUTLIERS

MEAN 5.D. C.V. C.S5. C.K.

X SERIES 40.534 42.075 1.038 1.998 7.466

LN X SERIES 3.2867 .945 .289 233 2.582
L-MOM RATIO 40.534 20.605 .508 .435 .229

SOLUTION OBTAINED VIA MOMENTS

PARAMETERS OF THE GEV WHICH DUPLICATES THE CONDITIONAL FUNCTION:
U= 19.54 A= 24,807 K= -.091

FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIQD PROBABILITY
1.003 .997%7 -
1.050 ' .952 -
1.250 .800 7.98
2.000 .500 28.8
5.000 .200 59.4
10.000 . 100 81.5
20.000 .050 104
50.000 .020 136
100.000 .010 161
200.000 .005 188
500.000 .002 227
Table 18: Output of CFA listing the summary statistics of the sample, the solution method, the

estimated parameters of the distribution, and the tabular flood frequency regime of the
Boyne River near Carman (050F003) for the generalized extreme value distribution, with
the censoring threshold at 187 m’/s.
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SOLUTION OBTAINED VIA MAXIMUM LIKELIHOOD

PARAMETERS OF THE 3LN WHICH DUPLICATES THE CONDITICONAL FUNCTION

HISTORICAL FREQUENCY ANALYSIS - THREE-PARAMETER LOGNORMAL DISTRIBUTION

050F003 BOYNE RIVER NEAR CARMAN
SAMPLE STATISTICS
MERN 5.D. C.V. C.S. C.K.
X SERIES 39.341 41.975 1.067 2.009 7.540
LN X SERIES 3.173 1.076 .339 -.384 3.887
X{MIN)= 1.180 TOTAL SAMPLE SIZE= 33
X{MAX)= 187.000 NO. OF LOW OUTLIERS= 1
LOWER QUTLIER LIMIT OF X= 1.452 NO. OF ZERO FLOWS= 0
AFTER REMOVAL OF ZEROES AND/OR LOW OQUTLIERS
MEAN 8.D. c.V. C.S. C.K.
X SERIES 40.534 42.075 1.038 1.998 7.4686
LN X SERIES 3.287 .945 .289 .233 2.582
LN{X-A) SERIES 3.066 1.121 .3686 -.058 2.649

A‘ 2.985 M= 2,927 s= 1.070
FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY

1.003 .997 3.97

1.050 .952 6.12

1.250 . 800 10.6

2.000 .500 21.7

5.000 . 200 48.9
16.000 .100 76.5
20.000 .050 111
50.000 .020 171
100.000 .010 228
200.000 005 297
500.000 .0o2 409

“Table 19:

Output of CFA listing the summary statistics of the sample, the solution method, the

estimated parameters of the distribution, and the tabular flood frequency regime of the
Boyne River near Carman (05SOF003) for the three-parameter lognormal distribution, with

the censoring threshold

at 187 m7/s.
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HISTORICAL FREQUENCY ANALYSIS -~ LOG PERRSON TYPE III DISTRIBUTICN
050F003 BOYNE RIVER NEAR CARMAN

SAMPLE STATISTICS

MEAN S.D. c.V. c.s. C.K.
X SERIES 39.341 41.975 1.067 2.009 7.540
LN X SERIES - 3.173 1.076 . 339 -.364 3.887
X {MIN)= 1.180 TOTAL SAMPLE SIZE= 33
X {MAX)= 187.000 NO. OF LOW OUTLIERS= 1
LOWER OUTLIER LIMIT OF X= 1.452 NO. OF ZERO FLOWS= 0

AFTER REMOVAL OF ZEROES AND/OR LOW OUTLIERS

MEAN 5.D. c.V. C.5. C.K.
X SERIES 40.534 42.075 1.038 1.998 7.466
LN X SERIES 3.267 .945 .289 .233 2.582

SOLUTION OBTAINED VIA MOMENTS

PARAMETERS OF THE LP3 WHICH DUPLICATES THE CONDITIONAL FUNCTION:
A= .8610E-01 B= 110.8 LOG(M)= =6.347 - M = .1752E-02
SYNTHETIC STATISTICS: MEAN= 3.194 S.D.= .906 C.S.= .190

FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY
1.003 .997 -
1.080 .952 5.66
1.250 . 8OO 11.3
2.000 .500 23.7
5.000 .200 51.8
10.000 .100 79.2
20.000 .050 114
£0.000 020 172
100,000 - L0140 228
200.0Q0 . 005 296
S0C.000 .002 409
Table 20: Output of CFA listing the summary statistics of the sample, the solution method, the

estimated parameters of the distribution, and the tabular flood frequency regime of the
Boyne River near Carman (050F003) for the Log Pearson Type III distribution, with the
censoring threshold at 187 m’/s.
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E= 416.04 A=

MEAN

X SERIES 40.534

LN X SERIES 3.267
L-MOM RATIO 40.534

SAMPLE STATISTICS

5.D. C.V.
42.075 1.038

+ 945 .289
20.605 .508

HISTORICAL FREQUENCY ANALYSIS - WAKEBY DISTRIBUTION
050F003 BOYNE RIVER NEAR CARMAN

MEAN S.D. C.V. C.5. C.K.

X SERIES 39.341 41.975% 1.067 2.009 7.540

LN X SERIES 3.173 1.076 .339 ~-.364 3.887
L-MOM RATIO 39.341 20.549 .522 .430 .235
X(MIN}= 1.180 TOTAL SAMPLE SIZE= 33
X(MAX}= 187.000 NO. OF LOW OUTLIERS= 1l
LOWER OUTLIER LIMIT OF X= 1.452 NO. OF ZERD FLOWS= o

AFTER REMOVAL OF ZEROES AND/OR LOW OUTLIERS

cC.5.
1.9%58
.233
- 435

THE FOLLOWING WAKEBY PARAMETERS WERE OBTAINED VIA LEAST SQUARES REGRESSION

C.K.
7.466
2.582

.229

-24.046 B= 1.89 = -434.077 D= =-.128
DISTRIBUTION IS UPPER BOUNDED AT E= .4160E+03
FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD

PERIOD PROBABILITY
1.003 .997 -
1.050 .952 6.20
1.250 . 800 9,23
2.000 .500 24.1
5.000 .200 62.6

10.000 .100 91.9

20.000 .0s0 119

50.000 .020 152

100.000 .010 174

200.000 .008 195

500.000 .002 219

Table 21: Output of CFA listing the summary statistics of the sample, the solution method, the

estimated parameters of the distribution, and the tabular flood frequency regime of the
Boyne River near Carman (05QOF003) for the Wakeby distribution, with the censoring

threshold at 187 m>/s.
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HISTORICAL FREQUENCY ANALYSIS - NONPARAMETRIC METHOD ' i
050F003 BOYNE RIVER NEAR CARMAN

SAMPLE STATISTICS

MERN S.D. c.V. C.8. C.K.

X SERIES 39.341 41.975 1.067 2.009 7.540

LN X SERIES 3.173 1.076 -339 -.364 3.887

X{MIN)= 1.180 TOTAL SAMPLE SIZE= 33

X({MAX)= 187.000 NCG. OF ZERO FLOWS= 0
SMOOTHING PARAMETER H = 5.053

FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY
1.003 .997 -
1.0580 .952 2.06
1.250 .800 5.84
2.000 .500 24.0
5.000 .200 55.8
10.000 .100 99.1
20.000 .050 - 122
50.000 020 135
100.000 .010 181
200.000 . 005 la8
500.000 .002 192
Table 22: Output of CFA listing the summary statistics of the sample, the computed smoothing

parameter H, and the tabular flood frequency regime of the Boyne River near Carman
(050F003) for the Nonparametric Method, with the censoring threshold at 187 m/s.
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Historical Flood Frequeney - Generalized Extreme Value Distribution
050F0(3 BOYNE RIVER NEAR CARMAN
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Figure 31: Output of CFA showing the frequency plot based on the generalized extreme value
distrib;ltion for the Boyne River near Carman - 05QF003, using a censoring threshold of
187 m’/s.
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Figure 32:
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Output of CFA showing the frequency plot based on the three-parameter lognormal
distribution for the Boyne River near Carman - 050F003, using a censoring threshold of
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Historical Flood Frequency - Log Pearson Type III Distribution

050F003 BOYNE RIVER NEAR CARMAN

ﬂc Parameters Estimated by Moments
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Figure 33: Qutput of CFA showing the frequency plot based on the Log Pearson Type I distribution
for the Boyne River near Carman - 050F003, using a censoring threshold of 187 m’/s.
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Historical Flood Frequency - Wakeby Distribution

050F003 BOYNE RIVER NEAR CARMAN
© Parameters Estimated by Least Squares Regression
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Figure 34: Output of CFA showing the frequency plot based on the Wakeby distribution for the Boyne
River near Carman - 050F0Q03, using a censoring threshold of 187 m®/s.
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Figure 35:
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Output of CFA showing the frequency plot based on the Nonparametric Method for the
Boyne River near Carman - 050F003, using a censoring threshold of 187 m%/s.
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WSC STATION NO=050F003
WSC STATION NAME=BOYNE RIVER NEAR CARMAN

TOTAL TIME SPAN, YT= 90 ¥RS. FLOW THRESHOLD = 105.000
OBSERVED PERKS, N= 33 HISTORIC PEAKS ABOVE THRESHULD, NHA= 4

OBSERVED PEAKS ABOVE THRESHOLD, NA= 4
OBSERVED PEAKS BELOW THRESHOLD, NB= 29
MISSING PERKS BELOW THRESHOLD, NC= S7

MONTH YEAR FLOOD DESCENDING  RANK RANEK CUM. RET.PERIGD
ORDER M ADJ. PROB. YEARS
(1) {2) (3) (4) (5) (6) (7} (8)
4 1893 187.000 187.000 1 1.00 .67 150.33
4 1919 13.500 132.000 2 2.00 1.77 56.38
4 1922 15.300 119.000 3 3.00 2.88 34.69
5 1927 29.700 105.000 4 4.00 3.99 25.06
THRE SHOLD
5 1928 12.600 69.700 5 6.97 7.28 13.74
4 1930 34.000 59.500 6 9.93 10.57 9.46
4 19586 56.100 56.100 7 12.90 13.85 7.22
3 1957 10.800 55.200 8 15.86 17.14 5.83
4 1958 6.090 54.100 9 18.83 20.43 4.89
4 1959 14.500 43.000 10 21.79 23.72 4.22
4 1960 43,000 38.800 11 24,786 27.01 3.70
3 1961 19.400 37.900 12 27.72 30.29 3.30
4 l9&2 38.800 35.700 13 30.69 33.58 2.98
6 1963 14.500 34.800 14 33.66 36.87 2.71
4 1964 13.900 - 34.000 15 36.62 40.16 2.49
4 1965 59.500 29.700 16 319.59 43.44 2.30
4 1966 55.200 23.800 17 42 .55 46.73 2.14
4 19867 37.900 19.400 18 45.52 50.02 2.00
8 1968 35.700 19.300 19 48.48 53.31 1.88
4 1969 69.700 15.300 20 51.45 56.59 1.77
4 1970 105.000 14.900 21 54.41 59.88 1.67
4 1971 54.100 14.500 22 57.38 63.17 1.58
4 1972 19.300 13.%00 23 60.34 66.46 1.50
4 1973 1.180 13.500 24 63.31 69.75 1.43
4 1974 132.000 12.600 25 66.28 73.03 1.37
6 1975 11.400 11.400 26 69.24 76.32 1.31
4 1974 34.800 16.800 27 72.21 79.861 1.26
5 1977 7.390Q 10.700 28 75.17 82.90 1.21
4 1978 23.800 7.390 29 78.14 86.18 1.16
4 1979 119.000 6.530 a0 81.10 89.47 1.12
4 1980 10.700 6.090 31 84.07 92.76 1.08
6 1981 5.470 5.470 a2 87.03 96.05 1.04
4 1982 6£.530 1.180=* a3 90.00 99.33 1.01
Table 23: Output of CFA listing the station’s flows, ranked flows, probability, and return period
as obtained from the Cunnane formula for the Boyne River near Carman (050F003), v

using a censoring threshold of 105 m*/s.
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HISTORICAL FREQUENCY ANALYSIS - GENERALIZED EXTREME VALUE DISTRIBUTION
O50F003 BOYNE RIVER NEAR CARMAN
SAMPLE STATISTICS
MEAN s.D. c.v. C.5. C.K.
X SERIES 39.341 41.975 1.0867 2.009 7.540
LN X SERIES 3.173 1.076 .339 -.364 3.887
L-MOM RATIO 39.341 20.549 .522 .430 .235
X{(MIN)= 1.180 TOTRL SAMPLE SIZE= 33
X({MAX)= 187.000 NO. OF LOW OUTLIERS= 1
LOWER OUTLIER LIMIT OF X= 1.452 NO. OF ZERO FLOWS= )
AFTER REMOVAL OF ZEROES AND/OR LOW OUTLIERS
MEAN 5.D. c.v. C.S8. Cc.K.
X SERIES 40.534 42.075 1.038 1.998 7.466
LN X SERIES 3.267 .945 .289 .233 2.582
L-MOM RATIO 40.534 20.605 . 508 -435 .229
SOLUTION OBTAINED VIA MOMENTS
PARAMETERS OF THE GEV WHICH DUPLICATES THE CONDITIONAIL FUNCTION:
U= 17.23 A= 18.440 K= -.146
FLOOD FREQUENCY REGIME
RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY .
1.003 .997 -
1.050 .952 -
1.250 .800 8.75
2.000 -500 24.2
5.000 -200 48.2
10.000 .100 66.4
20.000 .050 85.8
50.000 .020 114
100.000 .010 138
200.000 . 005 165
500.000 .002 204

Table 24:

Qutput of CFA listing the summary statistics of the sample, the solution method, the
estimated parameters of the distribution, and the tabular flood frequency regime of the
Boyne River near Carman (050F003) for the generalized extreme value distribution,

with the censoring threshold at 105 m%/s.

Page 79



EXAMPLES

HISTORICAL FREQUENCY ANALYSIS - THREE-PARAMETER LOGNORMAL DISTRIBUTION
OS0F003 BOYNE RIVER NEAR CARMAN

SAMPLE STATISTICS

MEAN S.D. c.v. c.s. C.K. .
X SERIES 39,341 41.975 1.067 2.009 7.540
LN X SERIES 3.173 1.076 .339 -.364 3.887
X (MIN)= 1.180 TOTAL SAMPLE SIZE= 33 .
X(MAX)= 187.000 NO. OF LOW OUTLIERS= 1
LOWER OUTLIER LIMIT OF X= 1.452 NO. OF ZERQ FLOWS= ©

AFTER REMOVAL OF ZEROES AND/OR LOW OUTLIERS

MEAN 5.D. cC.V. C.5. C.X.

X SERIES 40.534 42.075 1.038 1.998 7.466

LN X SERIES 3.267 . 945 .289 -233 2.582
LN{X-A) SERIES 3.082 1.106 . 359 -.032 2.631

SOLUTION OBTAINED VIR MAXIMUM LIKELIHOOD

PARAMETERS OF THE 3LN WHICH DUPLICATES THE CONDITIONAL FUNCTION:
A= 2.797 M= 2.864 5= 1.006

FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIOCD PROBABILITY
1.003 . .997 3.90
1.050 .952 6.07
1.250 .800 10.3
2.000 .500 20.3
5.000 .200 43.6
10.000 .100 66.4
20.000 .050 94.5
50.000 .020 141
100.000 .010 185
200.000 .005 237
500. 000 .002 320
Table 25: Output of CFA listing the summary statistics of the sample, the solution method, the

estimated parameters of the distribution, and the tabular flood frequency regime of the i
Boyne River near Carman (0SOF003) for the three-parameter lognormal distribution,
with the censoring threshold at 105 m/s.
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EXAMPLES

HISTORICAL FREQUENCY ANALYSIS - LOG PEARSON TYPE III DISTRIBUTION
050F003 BOYNE RIVER NEAR CARMAN

SAMPLE STATISTICS

MEAN 5.D. c.V. C.S. C.K.

X SERIES 39,341 41.975 1.067 2.009 7.540

LN X SERIES 3.173 1.076 .339 -.364 3.887
X(MIN)= 1.180 TOTAL SAMPLE SIZE= 33
X{MAX)= 187.000 NO. OF LOW OUTLIERS= 1
LOWER OUTLIER LIMIT OF X= 1.452 NO. OF ZERO FLOWS= 0

AFTER REMOVAL OF ZEROES AND/OR LOW OUTLIERS

MEAN s5.D0. c.v. c.s. C.K.
X SERIES 40.534 42.075 1.038 1.998 7.466
LN X SERIES 3.267 .945 .289 .233 2.582

SOLUTION OBTAINED VIA MOMENTS

PARAMETERS OF THE LP3 WHICH DUPLICATES THE CONDITIONAL FUNCTION:
A= .7567E-01 B= 121.7 LOG(M)= -6.121 M = .2196E-02
SYNTHETIC STATISTICS: MEAN= 3.0%0 S§.D.= .835 C.S.= .181

FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY
1.003 .997 -
1.050 .952 5.72
1.250 . 800 10.8
2.000 - 500 21.4
5.000 -200 44.0
10.000 ' - 100 65.0
20.000 . 050 90.5
50.000 -020 132
100.000 .010 171
200.000 .005 218
500.000 .002 293

Table 26:

Output of CFA listing the summary statistics of the sample, the solution method, the
estimated parameters of the distribution, and the tabular flood frequency regime of the
Boyne River near Carman (050F003) for the Log Pearson Type III distribution, with
the censoring threshold at 105 m%/s.
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EXAMPLES

HISTORICAL FREQUENCY ANALYSIS - WAKEBY DISTRIBUTION
0S50F003 BOYNE RIVER NEAR CARMAN

SAMPLE STATISTICS

MEAN 5.D. c.V. C.S. C.K.

X SERIES 39.341 41.975 1.067 2,009 7.540

LN X SERIES 3.173 1.976 .339 -.384 3.887
L-MOM RATIO 39.341 20.549 .522 .430 .235
X(MIN}= 1.180 TOTAL SAMPLE SIZE= 33
X(MAX)= 187.000 NO. OF LOW OUTLIERS= 1
LOWER OUTLIER LIMIT OF X= 1.452 NO. OF ZERO FLOWS= O

AFTER REMOVAL OF ZEROES AND/OR LOW OUTLIERS

MEAN sS.D. c.V. C.s. C.K.
X SERIES 40.534 42.075 1.038 1.998 7.466
LN X SERIES 3.267 .945 .289 .233 2.582
L-MOM RATIO 40.534 20.605 .508 .435 .229
THE FOLLOWING WAKEBY PARAMETERS WERE OBTAINED VIA LEAST SQUARES
REGRESSION
E= -27.12 A= 16.880 B= .93 cC= 47.125 D= .304
FLOOD FREQUENCY REGIME
RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY
1.003 .997 -
1.050 .952 3.66
1.250 .800 8.73
2.000 .500 21.4
5.000 .200 45.1
10.000 .100 64.8
20.000 L0580 87.9
§0.000 .G20 126
100.000 .C10 162
200.000 .G05 206
500.000 .G02 282
Table 27: Output of CFA listing the summary statistics of the sample, the solution method, the

estimated parameters of the distribution, and the tabular flood frequency regime of the
Boyne River near Carman (050F003) for the Wakeby distribution, with the censoring
threshold at 105 m>/s.
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EXAMPLES

HISTORICAL FREQUENCY ANALYSIS - NONPARAMETRIC METHOD
05C0F003 BOYNE RIVER NEAR CARMAN

SAMPLE STATISTICS

MEAN 5.D. C.V. C.5. C.K.

X SERIES 39,341 41.975 1.067 2.009 7.540

LN X SERIES 3.173 1.076 .339 -.364 3.887

X(MIN)= l.180 TOTAL SAMPLE SIZE= 33

X({MaAX)= 187.000 NO. OF ZERO FLOWS= o
SMOOTHING PARAMETER H = 4.956

FLOOD FREQUENCY REGIME

RETURN EXCEEDANCE FLOOD
PERIOD PROBABILITY
1.003 .997 -
1.080 .952 1.89
1.250 .800 9.38
2.000 .500 21.4
5.000 .200 49.4
10.000 .100 61.1
20.000 .050 74.5
50.000 .020 128
100.000 - .010 181
200.000 -005 188
500.000 .002 192
Table 28: Cutput of CFA listing the summary statistics of the sample, the computed smoothing

parameter H, and the tabular flood frequency regime of the Boyne River near Carman
(05OF003) for the Nonparametric Method, with the censoring threshold at 105 m/s.
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EXAMPLES

Historical Flood Frequency - Generalized Extreme Value Distribution
050FQ03 BOYNE RIVER NEAR CARMAN

ﬂo Parameters Estimated by Moments
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Figure 36: Output of CFA showing the frequency plot based on the generalized extreme value
distribution for the Boyne River near Carman - 050F003, using a censoring threshold -
of 105 m3ss.
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EXAMPLES

Historical Flood Frequency - Three Parameter Lognormal Distribution

050F003 BOYNE RIVER NEAR CARMAN
Parameters Estimated by Maximum Likelihood
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Figure 37: Output of CFA showing the frequency plot based on the three-parameter lognormal
distribution for the Boyne River near Carman - 050F003, using a censoring threshold

of 105 m?/s.
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EXAMPLES

Historical Flood Frequency - Log Pearson Type [II Distribution

050F003 BOYNE RIVER NEAR CARMAN
Parameters Estimated by Moments
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Output of CFA showing the frequency plot based on the Log Pearson Type III
distribution for the Boyne River near Carman - 050F003, using a censoring threshold

of 105 m?/s.

Figure 38:
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EXAMPLES

Historical Flood Frequency - Wakeby Distribution

050F003 BOYNE RIVER NEAR CARMAN

ﬁc Parameters Estimated by Moments
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Figure 39: Output of CFA showing the frequency plot based on the Wakeby distribution for the
Boyne River near Carman - 0SOF003, using a censoring threshold of 105 m?/s.
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EXAMPLES

Historical Flood Frequency - Nonparametric Method
050F003 BOYNE RIVER NEAR CARMAN
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Figure 40: Output of CFA showing the frequency plot based on the Nonparametric Method for
the Boyne River near Carman - 050F003, using a censoring threshold of 105 m?/s. -
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APPENDIX A

. APPENDIX A: Nonparametric Tests for Independence, Trend, Homogeneity, and Randomness

Al

Introduction

This appendix briefly summarizes the functions evaluated in the package and gives the methods

used to determine their statistical significance. Statistical tables are provided for ease of reference.

o .

Any statistical test of significance will generally be made using the following steps:

a) State the null hypothesis, H,. For instance in split sample tests, the null hypothesis may
be that there is no difference between the samples means,

b) Choose a significance level, a.

c) Choose an appropriate statistical test. In this program all tests are nonparametric.

d) Compute the test statistic.

e) The sampling distribution of the test statistic is known and has been tabulated, and the
chosen significance level then defines the region of rejection.

f) If the computed test statistic lies in the region of rejection, then the null hypothesis is
rejected.

The Spearman Rank Order Serial Correlation Coefficient Test forllndependence

The discharge series is put in chronological order. The series is then analyzed to determine the

longest sequence of consecutive observations. The longest consecutive series is then denoted as Q; with
i ranging from 1 to N. Two sequences are created and ranks assigned to the series.

and

QL Qi Qn.; where x; is the rank of the series Q,, i = 1 to N-1
Qa Qi i Qu where y;, is the rank of the series Q,, i = 2to N

Then the Spearman rank order serial correlation coefficient is:
1

S, = 5(-2"? + Tyl - $d?) (x? gy Al

where Ex? =(m?-m)/12 - T,

2
Ty; =(m®-m)/12 - LT,
m=N -1
d; 1s the difference in rank between x; and y;, and the summations are over the m pairs of x;, y;.
Ignoring for the moment the terms in T and putting them at zero, equation A.1 becomes:
S, =1-(6Td?)/ m® - m) A2

the more familiar form of the Spearman rank correlation coefficient.
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APPENDIX A

The terms in T adjust for tied ranks and are computed as follows. If for instance three
observations in the x series were tied for ranks 17, 18, and 19 then each observation is given the rank
18; if two were tied for ranks 24 and 25, then each is ranked 24.5.

For each tied set, T is computed from:
T, =¢%-1/12

where J is the number of observations tied at a givenrank. ¥ T, and E'I‘y are defined by the extension
of the foregoing.

For N less than 10, Tabie A.1 can be used for defining the region of rejection for a computed
S, at given significance level . When N is 10 or greater, then the function
2
t = S;{(m -2)/(1-5)1"? A3
is distributed like Student’s t with m-2 degrees of freedom. A one-tail test must be used. Table A.2 can
be used t0 obtain the critical values of t for various levels of significance c.

A3  The Spearman Rank Order Correlation Coefficient Test for Trend

If the series Q; with i = 1 to N is put in chronological order and ranks are assigned to the series

Qp Qg v Qn by y;, the rank of Q;
and L2, i, N by x;, the sequential order of Q;

then the Spearman rank order correlation coefficient r, is calculated as in equation A.l1, except that
m = N, T, = 0, and the summations are taken over the N pairs of x;, y;.

For N less than 10, Table A.1 can be used to obtain the region of rejection for a computed value
of r, at a given significance level «.

For N = 10 or greater, then the function
t=r,[(N~2) /(1 -2 Ad

is distributed like Student’s t with N-2 degrees of freedom. The null hypothesis is that there is no trend,
either upward or downward with time, and so a two-tail test is used. Table A.2 can be used to obtain
the critical values.
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APPENDIX A

. A4  The Mann-Whitney Split Sample Test for Homogeneity

The sample is split into two subsamples, and ranks assigned. Then the Mann-Whitney U statistic
is defined by the smaller of:

Uy =nyny + n(n +1}/2 - R, A.S
or Uy =nyn, - U, Ab

where ny is the size of the smaller subsample
D, is the size of the larger subsample
R, is the sum of the ranks in subsample n,

For both ny and n, less than 21, the critical values of U have been tabulated which define the
region of rejection. These values can be found in Table A.3. For n; greater than 4 and n, greater than
20, the sampling distribution of U rapidly tends to normality with:

[ nyng :| [N3 -N _ ET]
N(N - 1) 12

T = (J3-1)/12, where J is the number of observations tied at a given rank, The summation of T is over
all groups of tied observations in both subsamples.

zZ =

172 ’ A.7

. zis an N (0,1) variate and in the applications of the Mann-Whitney test used in this program, the
region of rejection is: .

z less than - 1.645 for o = 0.05
z less than - 2.326 for a = 0.01

Table A.4 lists value of area for the standard normal variate, z.
A.5  RUNS ABOVE AND BELOW THE MEDIAN FOR GENERAL RANDOMNESS

This randomness test is based on the order or sequence in which the individual scores or
observations where obtained. Actually, the test is based on the number of runs that a sample exhibits.
A run is defined as a succession of identical symbols that are followed and preceded by different symbols
or by no symbols at all.

The total number of runs in a sample of any given size gives an indication of whether or not the
sample is random. If very few runs occur, a time trend or some bunching due to lack of independence

is suggested. If a great many runs occur, systematic short-period cyclical fluctuations seem to be
influencing the sample.

For example, once the median of the sample has been determined, each observation can be
labelled as being above and equal to or below and equal to the median. If "A" represents above and
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equal to the median and "B" represents below and equal to the median, then a sample may be ordered
as:

AABBBABBBBAABA

{A run represents a succession of identical symbols.) For our example, each run is underscored and
numbered consecutively:
AA BBB A BBBB AA
1 2 374 735

B A
67

This sample begins with 2 observations above or equal to the median, followed by a run of 3
observations below or equal to the median, etc.

Seven runs are observed in all: that is, the total number of runs above and below the median,
RUNAB, is 7. If n; represents the number of events of type A, then n; = 6. If n, denotes the number
below the median, type B, then ny = 8. Thus, the number of observations is equal to (n; + ny).

In order to apply this run test, one must determine n;, n,, and RUNAB. If both n, and n, are
equal to or less than 20, then Table A.5 gives the critical values of RUNAB under H, for o = .05.
These are critical values from the sampling distribution of RUNAB under H,,. If the observed value of
RUNAB falls between the critical values, H, is accepted. If the observed value of RUNAB is equal to
or more extreme than one of the critical values, then H, is rejected.

Table A.5 consists of two tables. Table A.5(a) gives values of RUNAB which are so small that
the probability associated with their occurrence under H, is .025. Table A.5(b) gives values of RUNAB
that are so large that the probability associated with their occurrence under H, is .025. Any observed
value of RUNARB that is equal to or less than the value shown in Table A.5(a) or is equal to or larger
than the value shown in Table A.5(b) is in the region of rejection for ¢ = .05.

The null hypothesis, H,, is that the A’s and B’s occur in random order. The alternate hypothesis,
Hj, is that the order of the A’s and B’s deviates from randomness.

When either ny or n, is greater than 20, the sampling distribution of RUNAB tends to normality
with:

| RUNAB - [(2nym;)/(n; + mp) + 1] |
200,20y, - ny - mp)/[(n; + ny)*n, + ny - ]}

zZ= Ag

where z is an N(0,1) variate as described in Table A.4. This package uses a region of rejection defined
by

z greater than 1.96 for o = .03.
z greater than 2.575 for o = .0l,
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TABLE AN

Table of critical values of rq,
the Spearman rank correlation coefficient (Siegel, 1956).

Significance level {one-tailed test)

N
.05 .0

4 1.000

5 .900 1.000

6 .829 .9413
T .14 .893
8 .643 .833
9 .600 .183
10 .564 . 146
12 .506 .12
14 .456 .645
16 425 .601
18 L399 .564
20 .377 534
22 .359 .508
24 L343 L 485
2h .329 . 465
28 .317 448
30 . 306 .432




Level of significance for one-tailed test
.10 .05 025 1) .005 .0003s
df
Level of significancs for two-tailed test
.20 .10 05 2 Mm .Do1

1 3.078 §.314 12.706 31.821 63.6567 636.615

2 1.B86 2,920 4.303 6.965 9.925 31.598

3 1.638 2.353 3.182 4 541 5.841 12.941

4 1.533 2.132 2.778 3.747 4,604 8.810

] 1.476 2.015 2.50N 3.368 4.032 &.859

8 1.440 1.943 2.447 3.143 3.707 5.959

7 1.415 1.885 2.385 2.868 3.499 5.40%

8 1.397 1.860 - 2.308 2.898 3.355 5.041

9 1.383 1.833 ©2.282 2.821 3.250 4.781
10 1.372 1.812 2.228 2.764 3.160 4,587
11 1.363 1.796 2.201 2.718 3.108 4.437
12 1.358 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.824 2,977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073
16 1.337 1.748 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2567 2.898 3 965
18 1.330 1.734 2.10 2.552 2,378 3.922
19 1.328 1.720 2.003 2.539 2,861 3.883
20 1.325 1.725 2.088 2.528 2.845 3.850 .
21 1.323 1.721 2 08D 2 318 2831 3.819
22 1.321 1.717 2.0714 2.508 2.819 3.792
23 1.319 1.714 2.069 2. 500 2.807 3.767
24 1.318 1.711 2.0684 2.492 2.797 3.745
P 1.316 1.708 2.060 2.485 2.787 3.725
26 1.315 1.708 2.0566 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2171 3 690
23 1.313 1.701 2.048 2. 167 2.763 3. 674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2,457 2.750 3.646
40 1.303 1.684 2.021 2.423 2.704 3.5561
60 1.298 1.671 2.000 2.390 2.660 3.460
120 1.289 1.658 1.980 2.358 2.617 3.373
= 1.282 1.645 1.960 2.326 2.576 3.261

Table A.2: Table of critical values of

A-6

Student's t (Siegel, 1956)
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V2

0 o2 .03 04 05 .06 07 08 a9

0000 0040 | .0080 | 0120 § 0159 | 0199 | 0239 | 0279 | .0319 | 0359
0398 D438 | 0478 | 0517 | 0557 | 0396 | .0636 | 0675 | 0714 | 0753
0793 0832 | .OBTY1 | 0910 | 0948 | .0987 | 1026 | .1064 | 1103 | .114)
1179 A217 ] L1255 | 1293 ) 1331 | (1368 | 1406 | 1443 | 1480 | 1517
1554 1591 | 1628 | (1664 | 1700 | 1736 | 1772 | (1808 | .1B44 | 1879

A915 1950 | 1985 | 2019 | 2054 | 2088 | 2123 | 2157 | 2190 | 2224
2257 2291 (2324 | 2357 | 2389 | 2422 | 2454 | 2486 | 2518 | 2549
.2580 2611 | L2642 | 2673 { 2704 | 2734 | 2764 | 2794 | 2823 | 2852
.2881 2910 | 2939 | .2967 | 2995 | .3023 | .305] 3078 | 3106 | 3133
359 186 (L3212 | 3238 | 3264 | 3289 | 35 | 3340 | L3365 | 3389

_ﬁ.ai'lgggﬁn.h Fiz) = U[‘ ! ,:¥ dz
(1]}

8

D UL RLN=D DN WN RiWN-D

1 3413 338 | 3461 3485 | 3508 | L3531 3554 3577 3599 Jeh
1 L3643 3665 | L3686 5 .3T0B | 3729 | L1749 37710 3790 | L3810 3830
1 3849 869 | L3888 | .3907 | 3925 | 3944 | 3962 | 3980 | .3997 | 4015
1 4032 AD49 1 4066 | 4082 | 4099 ] 4115 4131 4147 A1H2 4177
1 4192 A207 | 4222 | 4236 | 4251 } 4265 4279 4292 4306 4319
] 4332 A345 1 4357 | 4370 | 4382 | 4394 4406 | 4418 | 4430 | .444]
1 4452 463 | 4474 | 4485 | 4495 | 4505 | 4515 | 4525 | 4535 | 4545
1 4554 4564 | 4573 | 4582 | 4591 4599 4608 4616 4625 4633
1 4641 4549 | 4656 | 4664 | 4671 | 4678 | 4686 | 4693 | .4699 | 4706
1 4713 AT19 | 4726 | 4732 | 4T3 | 4744 4750 4756 4762 4767
2 4772 ATT8 | 4783 | 478R | 4793 | 4798 | 4803 | 4808 | 4812 | 4817
2 A821 4826 | 4830 | 4834 ! 4838 | 4842 | 4B46 | 4850 | 4854 | 4857
2.2 § .4B61 4865 | 4868 | 4871 | .4B75 | 4878 4881 48B4 4887 4890
23 | 4892 AB96 | 4B98 | 4901 | 4904 | 4906 | 4909 | 4911 | 4913 | 4914
2.4 | 4918 A9y | 4922 | 4925 | 4727 | 4929 493 4932 4934 4934
25 | 4938 4940 | 4941 | 4943 | 4945 | 4946 | 4948 | 4940 ] 495]1 | 4952
2.6 | 4953 4955 | 4956 | 4957 | 4959 | 4960 | .4961 4962 1 4943 4964
2.7 1 4965 4966 | 4967 | 4968 | 4965 § 4970 | 4971 ] 4972 | 4973 | 4974
28 1 4974 4975 | 4976 | 4977. | 4977 | 4978 | 4979 | 4980 | 4980 | 4981
2.0 | 4981 4982 | 4983 | 4983 | 49B4 | 4984 | 4985 | 4985 | 4986 | 4986
30 | 4987 4987 | 4087 | 4989 | 4988 | 4989 | 49B% { 4989 | 4990 | 4990
31 | 4990 A991 | 4991 | 4991 | 4992 | 4992 | 4992 | 4992 | 499) | 4993
32| 993 4993 | 4994 | 4994 | 4994 | 4994 | 4994 | 4995 | 4995 4995
33 | 4995 4995 | 4996 | 4996 | 4996 | 4996 | 4996 | 4996 | 4994 | 4997
34 | 4997 4997 | 4997 | 4997 | 4997 | 4997 | 4997 | 4997 | 4998 | 4998
40 | 499968

5.0 | 4999997

This table gives the probability of a random value of a normai variate falling imthe range z = Glo 2 = 2
{in the ihaded grea 1n figure}). The prabability of the same variate having a deviation greater than 7 is given
bv 0.5 — prabability from the table for the given ;. The table refers to a single tail of the normal disuri-
butian; therefore the prabability of & normal varisie failing in the range 2 = 2 x probability from the
tahle for 1he given ;. The probability of a variate falling oulnide the range 225 | = 2 = probability from
the rable for given ¢ .

Tabie A.4: Areas under the normal curve (Kennedy and Neville, 1976)
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. ™la 3 4 567 8 91011 12 13 14 15 16 17 18 18 20

1 -
2 2 2 3 2 2 2 2 2 2 g
3 222222 2 2 2 3 3 3 3 3 3
" 2223333 3 3 3 3 4 4 4 4 4
5 2 2333334 4 4 4 4 4 4 5 85 5
8 92 3333444 4 5 5 5 85 5 5 8 6
7 2 233344505 5 5 5 6 6 6 6 6 &
8 21433445505 8 6 86 8 6 7 T 7T 7
9 23344525656 & 6 7 7 7T 7 8 8 8 3
10 233485 %668 7 7 7 7 8 8 8 8 9
11 2 3 445656867 7T ¥ 8 8 8 9 0 0 9
12 |2 23 4458677 7 8 8 8 9 9 8 10 10
13 |2 23 48556877 8 8 9 9 % 1010 10 10 .
14 |2 23 4666778 8 8 9 910 10 10 11 1l
15 |2 33 45 667 78 8 0 9 10 10 11 11 11 12
16 |23 445667 88 9 9 10 1011 11 11 13 12
17 |2 3 44567789 9 10 10 11 11 11 12 12 13
18 |2 3 4556678 8% 9 10 10 11 11 12 12 13 13
19 |23 4566 7 889 10 10 11 11 13 13 13 13 13
20 |2 34566780990 1010 11 12 12 13 13 13 14

(a)

ng
n

2
3
4 3 0
5 9 10 10 11 1
6 g 1011121213 1313 13
7 1112 13 13 14 14 14 14 16 15 15
8 111213 14 14 1515 18 16 18 18 17 17 17 17 17
9 1314 14 15 16 18 18 17 17 18 18 18 18 18 I8
10 13 14 15 18 18 17 17 18 18 18 19 19 19 20 20
1 13141518 17 17 18 19 18 19 20 20 20 21 21
12 331416 16 17 18 19 19 20 20 21 21 21 22 22
13 1516 17 16 19 19 20 20 21 21 22 22 23 23
14 1516 17 18 19 20 20 21 22 22 23 23 23 24
16 151618 18 19 20 21 22 22 23 23 24 24 25
18 17181920 21 21 22 23 23 24 25 25 25
17 17 18 16 20 21 22 23 23 24 25 25 26 26
18 17 18 1920 21 22 23 24 25 25 26 28 27
19 17182021 22 23 23 24 25 28 26 27 27
20 17182021 22 23 24 25 25 28 27 27 28

'h)
Table A.5: Table of ceritical values of RUNAB in the runs test
(Siegel, 1956). Given in the bodies of Table A.5(a) .

and Table A.5(b) are various critical values of RUNAB

for various values of n, and n, . For the one-sample

runs test, any value of RUNAB which is equal to or

smaller than that shown in Table A.5{a) or equal to .
or larger than that shown in Table A.5(b) is signif-

icant at the .05 level.
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AFPENDIX B

APPENDIX B: The Distributions

The following appendix is intended to summarize the mathematical relationships upon which the
computations are based and to describe the algorithms used in their solution.

B.1  Population Statistics

B.1.1 Moments

Given a sample x,, ..., Xy, the best estimates of the population mean, standard deviation,
coefficient of skew, and coefficient of kurtosis, as computed herein, are given by:

Mean, X = (I/N) T x B.1

Standard deviation, s = { [IAN-1)] T (x - X )*}!? B.2
Coefficient of skew, g, = { [N2/{(N-1}N-2)]}(m4/s%) B.3
Coefficient of kurtosis, g, = { N2 N+1)/[(N-1)}N-2)(N-3)}} (m,/s*) B.4

where m; and m,, the third and fourth central moments, respectively, are defined by

m; = (UN)E (x-%)3 B.5

m, = (/N)T (x-%)* B.6
The summations are carried out over the N terms of the data series. When working in
logarithmic units, the same definitions apply with x replaced by its natural logarithm, Inx.

B.1.2 L-Moments

Given an ordered sampled x; <x, < ... £xy, sample L-moments may be estimated and
can, in turn, be used to estimate the parameter for various distributions. L-moments can be
obtained from the relations (Hosking, 1989):

b= Ny (-DGED..G-D B.7
r j=1(N-D(N-2)...(N-r)

-1 { r-1 r+k-1
l)Mr—],h: = ("l)r k ( k ) ( Kk ) B.8
o B.9
I = k)—:o P ixbx :

where 1_is an unbiased estimator of the population L-moment, AL
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APPENDIX B

L-moment ratios are defined as:

T, = NN ; 123 - B0

and can be estimated by t. = 1/1,. Hosking (1989) gives the bounds on A, »,, 73, and 7, to be
0<Xgy, -1<73<1, U4 (53-1)S7,<]1 B.11 .

A is the arithmetic average, and ), is a measure of the dispersion of the sample similar to the .
standard deviation, 75 is considered to be a measure of skewness, while 7, reflects the
peakedness of the sample — kurtosis.

L-moments can also be estimated based on plotting position formulae. Greenwood, et al.
(1979) introduced the concept of probability weighted moments, which can be used for the
estimation of the parameters of various distributions. Hosking (1989) showed that probability
weighted moments are linear combinations of L-moments. He noted, however, that L-moments
"are more convenient ... because they are more directly interpretable as measures of the scale and
shape of probability distributions.” :

Given a plotting position formulae of the form

DN = (i+A)/(N+B) for B> A> -1 B.12

then the L-moments can be estimated from (Hosking, 1989)

1 Pl (PinX; B.13

>
1]
|
Wt o

1

where P*_| (p..\) is the (r-1)th shifted Legendre polynomial. That is,

1 N
A=< I 200-10% B.14
N i=1
1 N v
Ay = T L [6 @ .n)-6 (;n)HIx B.15
i=1
N
X4 = -l\l_l iz: [20(pi :N)2 - 3O(pi:l'"l)z + lz(pi:N)- - l]xi B.16 .

1

while )11 is the arithmetic average. The plotting position based method yield consistent but biased
estimates of A,. Hosking (1989) writes that

“There is no theoretical reason for preferring plotting-position estimators
to the unbiased estimators, but practical experience shows that plotting-
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APPENDIX B

position estimators sometimes yield better estimates of parameters and
quantiles when a distribution is fitted to data. In particular the choice
P,., = (i-0.35)/n gives good results.,.”.

The plotting-position based approach is adopted for use in CFA. Programming was
adapted from work provided by Hosking (1988).

B.1.3 Historically-Weighted Population Statistics
Given that
NA = the number of floods above and equal to the threshold
NB = the number of floods below the threshold
NC = the number of censored floods

and YT = NA + NB + NC, the total time span,

then W = (YT -NA)/NB B.17

and X = (WEx, +Ex,)/(YT -WL) B.18

§ = [(WEd + £dd) /(YT -wL -1)]'2 B.19

g, = (YT -WL)(W vd) +Tdl/ 1/ (YT -WL -1(YT -WL -2)] B.20

where x, is a flood above or equal to the threshold, xy, is a flood below the threshold, d, and d,,
are the deviations of x, and x,, from X and L is the number of low outliers and may include zero
flow events. X, S, and g, represent the historically-weighted mean, standard deviation, and
coefficient of skew, respectively, of the historic sample. Note that the portion of the record
where sampling did not occur but historic information exists is weighted in the guise of the
recorded floods below the threshold. The weighted statistics can be used to obtain moment
estimates of the parameters of the distribution.

B.2 The Generalized Extreme Value (GEV) Distribution

The concept of a GEV distribution is beneficial if an extreme value distribution s t0 be used but
the type is unknown. When sample data are available, the GEV distribution may be fitted to it by various
methods such as moments, maximum likelihood, and L-moments. The fitting procedure used herein is
the method of L-moments as adopted from Hosking (1988). Hosking, et al. (1985) and Hosking (1990)
have demonstrated that the probability weighted moments (L-moments) approach yielded more accurate
quantile estimates than the maximum likelihood approach for sample sizes common in flood hydrology.

The exact extreme value distribution is determined by the value of the parameter k. In the event
of an estimated k value being close to zero (< 10‘5), the data are fitted directly to the EV1 distribution.
This is because the parameters g and « of the EV1 distribution can be more efficiently estimated than the
w and o values estimated for the GEV distribution.
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B.2.1 The Density Function of the EV1

The probability density function of the EV1 distribution can be expressed as

f(x) = = exp [-(x - wla-e F Wy B.21

Q=

The distribution function is

F(x) = exp (_e-(x - ,u)lo:) B.22

where « is a scale parameter (o« > 0), p is a location parameter, and F(x) is the probability of
a value of the variate being less than x.

The k referred to previously is zero and does not appear in these expressions. This distribution
is unbounded below and above.

B.21.1

B.2.1.2

L-Moment Estimates of the EVI - No Historic Information
On rare occasions, the shape parameter, k, of the generalized extreme value
distribution will be theoretically zero or will have been set to zero as it was found to be

less than 1x10. In such cases, parameters of the EV1 distribution are estimated via L-
moments (Hosking, 1988; 1990) using the following equation:

& =Xy / In2 = 1.442695 X, B.23

A=A - (¥A%)/1n2 = A - 8327462 &, B.24

where A, is the arithmetic average or first L-moment, ), is the second L-moment found
from equation B.14, and v is Euler’s constant. The estimated parameter « is then
substituted into equation B.24 to give the estimate to p.

Moment Estimates of the EVI - with Historic Information

When historic information is present, parameters are estimated from the moment
relations:

& = 3Y6 _ 110607 5 B.25
T -
po=% - y& =% - 57721566 & B.26

where vy is Euler’s constant, and X, and ¥ are the historically-weighted mean and
standard deviation as obtained using equations B.18 and B.19. The estimated value of
X i3 substituted into B.26 to obtain y.

Page B-4




APPENDIX B

B.2.2

B.2.2.1

B.2.2.2

The Density Function of the EV2 and EV3

The probability density function of the EV2 and EV?3 distribution can be expressed as
f(x) = 1 (- X-p k)“k‘le-[l—k(x—p),!a]lfk 5o
o a

The distribution function is
F (x) = e [1k(x-m)/a™ B.28

where «, i, and F(x) are as previously defined for the EV1 and k is a shape parameter. For the
EV?2 distribution, k is less than zero and the distribution is lower bounded at (# + a/k) and
unbounded above. For the EV3 distribution, k is greater than zero and the distribution is upper
bounded at ( + a/k) and unbounded below.

L-moment Estimates of the EV2 and EV3 - No Historic Information
The method of L-moments as documented by Hosking (1988) is adopted for the

estimation of the parameters of the EV2 and EV3 distributors. The shape parameter, k,
is estimated from the relations (Hosking, 1988)

K = 7.817740z + 2.93046222 + 13.64149223 + 17.206675z% B.29
and  z=2/(+3) -In2/ln3 B.30

where 73 is the L-moment ratio of )\31‘)\2 Equatlons B.14 and B.15 are used to estimate
X, and A5, respectively, when -0.1 < 75 < 0.5. When 75 lies outside this range, a
Newton-Raphson iteration procedure is used to increase the accuracy of the polynomial
relationship. Once k has been estimated, o and x are found from (Hosking, 1990):

= Lk/{(1-275ra + k)} B.31
and po=x + o {T1+k) -1 }/k B.32
where A and iz are as previously defined. The estimated value of & from equation B.31
is substituted into equation B.32 to obtain the estimate of the location parameter u.
Moment Estimates of the EV2 and EV3 - with Historic Information

When historic information is present, parameters are estimated using historically
weighted moments. For the EV?2 distribution, the coefficient of skew is related to the
shape parameter k by:
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g3 = T(1+3k) - 30(1+2k)T(1+k) + 2D3(1+k) 'B.34
= T(1+42k) -T3(1+k) B.35

where I" implies the gamma function such that
I'k) = k-1
For the EV3 distribution, the coefficient of skew is related to the shape parameter k by:
32
g = -u3/( ) B.33(b)

The historically-weighted coefficient of the skew, computed using equation B.20, is
substituted for g, in equation B.33. Parameter k can be obtained via iteration of the
above equations or directly from the polynomials:

k = 0330113 - .106601g, + .01454183; - .000940242g; + .0000231652%{ B 3¢(a)
B.1sg <11.8)
k = 28732449 - 35732233, + .111958233] -.0187768F; + .001322037] B 36)

(120< g, <3.1)

k = 27759 -.32188g, + .06203g] + .01383g - .007012g} B.36(c)
(~.21665< g, <1.08)

k = .27752-.320791%, + 06849437 + .0315096g; — 00359341} B.36(d)
(-3.18508 < §, < -.21665)

k = 2179163 - .470657g, - 0414345578 - 0016627693 B.36(e)
(-8.2<F < -3.18508)

The polynomials accurately cover the range of skew from -8.2 to +11.8. Note
that k is assumed equal to zero for the range of skew from 1.08 to 1.20. These
polynomials should be sufficient for hydrologic applications. Once k has been estimated
from the appropriate polynomial, the scale parameter, «, can be estimated from
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g
a=|k| — B.37

Tz

where ¥ is the historically-weighted standard deviation of the untransformed floods as
per equation B.19 and y, is as previously defined. The location parameter u for an EV2
(k < 0) distribution, can be obtained from

po=%+ (1-0Q + K]—— B.38(2)
)
@ can be estimated for an EV3 distribution (k> 0) from

p=%-[1-T( + K- B.38(b)
42

where k, ¥, and u, are as previously defined and X represents the historically weighted
arithmetic average of the untransformed floods as per equation B.1.

B.2.3 T-Year Flood Estimation - Generalized Extreme Value Distribution

B.2.3.1

B.2.3.2

Flood Estimation with No Low Outliers Present
If no low outliers are to be treated, the T-year floods are computed from
Qr = u + a {-In[~In(1-1/T)1} B.3%@)

or
Qr = & - (a/k) {[~In(1-1/T)* - 1} B.39(b)

Equation B.39(a) applies for the EV1 distribution, while equation B.3%(b) is for the EV!
and EV?2 distributions. The program automatically selects the appropriate equation and,
with the appropriate return period, T, computes and displays flood estimates for return
periods of 1.003, 1.05, 1.25, 2, 5, 10, 20, 50, 100, 200, and 500 years.

The Conditional Probability Function

Consider a sample of N observations, where L observations have been identitied
as low outliers, Now let n be the number of observations excluding the L. low outliers;

- thus, n=N-L. For the moment, consider these L. members as zeros, such as the

probability of exceeding x is given by
P{x) = [1-F(x)] (N-L)/N B.40

From the sample, N and L are known. F(x) is defined from the estimated parameters
-- equations B.22 and B.28. However,
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B.2.3.3

F(x) = 1-1/T B.41

and substituting B.41 into B.40 gives
P(x) = [T] (N-L)/N B.42

Thus, equation B.42 can be substituted into equation B.39 in order to obtain the
magnitude of the T-year event where 1/T of equation B.39 is equal to P(x). In the case
of the EVI1:

Q= p+a{ -In[-In(1- (UT)N/(N-L))] } B.43(a)

and in the case of the EV2 and EV3;
Qp = p~(/k) {[-In(1-(I/T)N/(N-L)I*-1} B.43(b)

Flood Estimation with Low Outliers Present

In the event that low outliers - zero or non-zero - have been identified in the
sample, the L outliers are removed from the sample of size N and the distribution
parameters are estimated from the n remaining observations, either by maximum
likelihood or by moments as previously outlined. This procedure is followed in the case
of a historic analysis as well as a conventional analysis. Floods for any desired return
period or probability of exceedance can then be estimated using these parameters, known
values of N and L, and equation B.43.

However, this procedure will give a probability function which is not truly that
of the distribution. Furthermore, it is not possible to estimate floods of return periods
less than N/n because, in the conditional probability function, their exceedance
probabilities then become greater than one.

To avoid these difficulties, "synthetic” EV1, EV2, and EV3 distributions are

fitted throungh portions of the "conditional” frequency curve. Since the EV1 has two
parameters, two points on the curve are necessary. Parameters for the EV1 follow from

# = Qoo ~4.60015¢ B.45
The EV2 and EV3 have three parameters, thus three points on *he curve are

necessary. The mathematics are considerably simplified by choosing the floods of return
periods 1.582, 10.483, and 100 years. Parameters follow from
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B.3

B.3.1

B.3.2

# = Qs B.46
k = -21738 In [ 1 +(Q, s5p-Q00)/ Z, ] B.47
o = k Zl B.48

where

Z = [(QI.SBZQIOD_Q:IZOABB ) 1(Qy sg2+Q100-2Q) 582)1-Q1 582

The "retro-fitted" parameters of the EV1 and of the EV2 and EV3 distributions
can be used in equation B.39(a) or B.39(b) to produce revised flood estimates for the
required return periods.

Note that the procedure of retro-fitting the parameters to produce a synthetic EV
distribution is used only when all of the low outliers are non-zero. The procedure is not
used when zeros are present in the sample because it can result in an unrealistic situation
whereby the exceedance probability of a non-zero flow is larger than the exceedance
probability of zero flow as indicated by the sample.

The Three-Parameter Lognormal Distribution

The Density Function

f(x) = L exp | A= [ln(x-a) -m 12} B.49

o(x-a)2r 20

where m and o2 are, respectively, location, and scale parameters for the transformed variate
In(x-a). For the untransformed variate, the skewness is a function of o2, and "a" is the lower
boundary of the variate x.

Maximum Likelihood Estimates - No Historic Information

Applying maximum likelihood theory to the density function, equation B.49 gives:

dlnL/da = (1-m/e®) T (x-a)"! + (/a) T {[In(x-a)j(x-a)~'} = 0 B.50
3lnL/3m = (1/e®) T {In(x-a)-m} = 0 B.51
dlnL/36® = -n/2¢%+ [1/(26*)] T {In(x-2)-m}2 = 0 B.52

Equations B.50, B.51, and B.52 can be re-arranged to give an equation in "a" only:
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B.3.3

) L 1n?(x-a) - “?1,) T Inx-a)?- (1) ¥ In(x-a)

- n n . v in(x-a} _
f@ =% . (x-a) L (x-a) 0

B.53

Note that, in this application, n is the number of data items after the removal of any low outliers
or zeros: n=N-L.

To soive Equation B.53, f(a) is evaluated at an initial value of a = 0.975x,;,. and the
sign of the imbalance is noted. At an arbitrary extreme value of a, a = -80 %, f(a) is again
evaluated. If a sign change has occurred, indicating that a root lies between 0.975x;, and -80% ,
then a binary search is made in this interval until the equatlon is balanced. If no 31gn ‘change has
occurred, then the root is assumed to be greater than x_

Having found a, then
m = (1/n) ¥, In(x-a) B.54

and, correcting for bias,

@ = {1/tm-1) } T {In(x-a)-m}> B.55

Hence, the estimated parameters a, m, and ¢°.

Experience has shown that a root, if it exists, will always be greater than -80 times the
mean of the data sample. For a positively skewed sample, it must also, of course, be less than
the minimum member of the data sample.

It the skewness of the sample is negative, then equations B.49 through B.55 still hold,
except that (x-a) is replaced by (a-x) and the distribution becomes bounded above. The root in
this case lies to the right of x_,  and the solution procedure starts at 1.025x and searches
to the right to +80% .

max.
Moment Estimates - No Historic Information
On rare occasions, the maximum likelihood method will fail to find a root and, in these

cases only, moment estimates are made from the following set of equations. First solve the
following tunction for c:

¢+ 3¢ - g, =0 B.56
then
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B.3.4

a=Xx-slc B.57
m = In(|sic|) - %In(c?+1) B.58
@ = In(c®+1) B.59

where x, s, and g, are computed from equations B.1, B.2, and B.3.

In equation B.56, for a positive value of g;, there is only one real root for ¢, which is
positive. In the event that g, is negative, then there is again only one real root, but this time ¢
is negative.

It should be noted, that for negative skew, the three-parameter lognormal distribution
becomes unbounded below and has an upper bound at the parameter "a”.

Maximum Likelihood Estimates - With Historic Information
Given N observed sample members, plus a further r members which are known only to

be less than the censoring threshold x, maximum likelihood estimates of parameters are obtained
by solving the transcendental system:

[Tt -rf(t)/F(t)la=0 B.60

[-N+ L6 -rt,ft,) /F@)1/a=0 B.61
oL [/ (x-a)] + £t/ (x;-a) - rf(t)/ [(x,-a) F()] =0 B.62

where t; = [In(x;-a)-m]/e, and fit,) and F(t,) are the ordinates of the density and probability
functions respectively, at t_, the standard normal variate corresponding to the censoring threshold.

Although far too complex to be shown here, equations B.60, B.61 and B.62 are reduced
in the program to a single transcendental equation in "a" only to give

fa =0 B.63

which can be solved by any numerical analysis method.

Experience has shown that, if a solution for "a" exists, it will always be greater than -80
times the mean of the data sample. Since a is the theoretical lower bound of the distribution, it
must also be less than the minimum member of the data sample. Therefore, the search range is
limited to -80X < a < X, .

To find the root of equation B.63, the function is first evaluated with a trial value of
a = 0.975x,,,, . A check is made to see that, in the course ot the computations, @ is a positive
value. If not, a is successively decremented by 0.01 x_, until ¢® is a positive value. The

Page B-11



APPENDIX B

B.3.5

B.3.6

B.3.6.1

B.3.6.2

equation is then checked for balance and the sign of the imbalance is noted. Next, the equation
is evaluated assuming a = -80x . If the sign of the imbalance is opposite to that of the previous
evaluation, then a binary search is made between .975x,; and -80% until a value of "a" is found
that balances the equation.

If no solution is found within the search range, that is, if the imbalances resulting from
the two evaluations are of like sign, then the program switches to the historically-weighted
moments technique for estimating the parameters,

In the course of reducing equations B.60, B.61 and B.62 to a single equation in "a", the
other parameters, m and ¢2, are isolated. Thus, when equation B.63 is balanced, estimates have
been obtained for all three parameters of the distribution,

Moment Estimates - with Historic Information

Section B.2 describes how to obtain the historically-weighted mean, standard deviation,
and coefficient of skew. For a historic sample, these estimates can be substituted directly for the
moment statistics in equations B.56, B.57, B.58 and B.59. These equations yield estimates of
the parameters of the distribution based on the recorded data and the historic information.
I-Year Food Estimation - Three-Parameter Lognormal Distribution

Flood Estimation with No Low Outliers Present

If no low outliers are to be treated, the T-year floods are computed from:

Qr = a + exp(m + to) B.64

n

or

Qr

a - exp(m - to) B.65

Equation B.64 applies in the lower-bounded case, and equation B.65 applies in
the upper-bounded case. The program automatically selects the appropriate equation and,
with the appropriate values of the standard normal deviate, t, computes and displays flood
estimates for return periods of 1.003, 1.05, 1.25, 2, 5, 10, 20, 50, 100, 200, and 500
years,

The Conditional Probability Function

Consider a sample of N observations, where L observations have been identified
as low outliers Now let n be the number of observations excluding the L low outliers;
thus, o = N-L. For the moment, consider these . members as zeros, such that the
probability of exceeding x is given by

P(x) = [1-F(x)] (N-L)/N B.66
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Thus, from the cumulative probability function, the probability of exceeding x
can be found. The more usual requirement is to find x with a given probability of
exceedance, but equation B.66 cannot be solved in this fashion. However, by making
the substitution [In(x-a)-m}/¢ = t and rearranging.

o0
P(x)N/(N-L) = [ &(t)dt B.67
t

where t is a standard normal variate, distributed as N(0,1).

For instance, suppose we wish to find the conditional value of t, t!, that makes
P(x) = 1% when N = 20, L=1.

1 From tables, we have to find t! that makes 1-F(t)=0.01 x 20/19 or 0.0105 and
tt = 2.037.

In this program, equation B.67 is solved for t = t! using the following numerical
procedure. The normal probability integral with zero mean and unit standard deviation
can be represented as:

P(t)-L exp - [ ]dt B.68
vers t

where P(t) is the probability of exceeding t. Hence, it is then a question of finding the
number of standard deviations corresponding to a given probability of exceedance, or

solving equation B.68 for t, given P(t). The solution yields t, the number of standard
deviations from the mean.

Rather then using equation B.68, the method of development by Hastings (1955)
is used. Hastings (1935) gives the following solution for the interval:

0 < P(t) <05

Cp +C V o+ c3V2
1+ 4V +dyV? +dyV?

where V = {In[1/P®)]*}'/?

and ¢, = 2.515517 d, = 1.432788
¢, = .802853 d; = .189269
c; = 010328 d, = .001308

The error is less than 4.5 parts in 10 000.
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B.3.6.3

The restriction on P(t) given is easily overcome since the number of standard
deviations to P(t) = 0.95, is the same as to P(t) = 0.05, with the sign reversed.

Flood Estimation with Low Outliers Present

In the event that low outliers — zero or non-zero — have been identified in the
sample, the L outliers are removed from the sample of size N and the distribution
parameters are estimated from the n remaining observations, either by maximum
likelihood or by moments as previously outlined. This procedure is followed in the case
of a historic analysis as well as a conventional analysis. Floods for any desired return
period or probability of exceedance can then be estimated using these parameters,
conditional standard normal deviate (t) values derived from equation B.67, and either
equation B.64 or B.65.

However, this procedure will give a probability function that is not truly three-
parameter lognormal. Furthermore, it is not possible to estimate floods of return periods
less than N/n because, in the conditional probability function, their exceedance
probabilities then become greater than one.

To avoid these difficulties, a "synthetic” three-parameter lognormal distribution
is fitted through that portion of the "conditional" frequency curve between T=2 and
T=100. Since three parameters have to be estimated. three points on the curve are
necessary. The mathematics are simplified by choosing the floods of return periods 2,
8.17, and 100 years. Parameters follow from

2
o Q0 Qe - Qg g B.70
Q; + Qoo — 2Q3 17

m = In[abs(Q, - )] B.71

o = abs{In[abs(Q,gp-2)] -m}/2.326 B.72

Equations B.70, B.71, and B.72 hold for both positively skewed and negatively
skewed samples.

These "retro-fitted” parameters are then used with unmodified values of standard
normal deviate (equation B.69) and either equation B.64 or B.65 to produce revised flood
estimates for the required return periods.

Note that the procedure of retro-fitting the parameters to produce a synthetic
three-parameter lognormal distribution is used only when all of rhe low outliers are non-
zero. The procedure is not used when zeros are present in the sample because it can
result in an unrealistic situation whereby the exceedance probability of a non-zero flow
is larger than the exceedance probability of zero flow as indicated by the sample.
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B4

B.4.1

B.4.2

The Log Pearson Type III Distribution
The Density Function

The probability density function (p.d.f.) of the Log Pearson Type III distribution can be
expressed as:

_ expi-(nx-m)/a}, ./ b-1 B.73
f(x) ST (nx-m)/a

where a, b, and m are respectively scale, shape, and location parameters and I is the gamma
function of the argument within parenthesis.

Bobée (1975) shows the many different shapes which this p.d.f. can take. The various
shapes depend on the relationship between the parameters, and not all these shapes are credible
in flood frequency hydrology. This is particularly so in cases where "a" is negative. Negative
values of "a" are common for flood series on Canadian rivers.

Maximum Likelihood Estimates - No Historic Information

~ Applying maximum likelihood theory to the p.d.f., equation B.73, gives

Aol _ 1 - iax-m) - 1nNb =0 B.74
da 22 a

Sk _ _Ny@m) + £l o g B.75
ab a

all'lL = __E _ (b"l) E 1 = 0 B?ﬁ
am a Inx-m

where (b} is the Digamma or Psi function, 3InI* (b)/db.
Equations B.74, B.75 and B.76 are three simultaneous transcendental equations in a, b,

and m. Equation B.75 can be reduced to one transcendental equation in m, rather than in three
parameters, by rearranging equations B.74 and B.76. This gives:

a= ...b}..b. ¥ In(x-m) B.77
b = ¥ (nx-m)~!/{ ¥ (nx-m)~! - N2/ ¥ (Inx-m)} B.78

Substitution of equation B.77 in equation B.75 eliminates a, then substitution of equation
B.78 in equation B.75 eliminates b. The Psi function can be replaced by a combined formula and
asymptotic expansion where y(b) tends to
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B.4.3

B.4.4

In(bs2) - 1, 11 1 B.79

2042 122 120042 2520+2)° (D) b

The distribution of equation B.73 can be either positively or negatively skewed. It can
be shown, by considering the moments of the distribution, that if the skew coefficient of the
logarithms is positive, "a" must be positive. Therefore, from equation B.75, (Inx-m) must always
be positive for all values of inx. Tt follows then that the distribution is bounded below at exp. m.
It is more common in flood series from Canadian rivers to find that the skew coefficient of the
logarithms is negative, and (Inx-m) must also be negative. Thus the distribution is bounded
above at exp. m. ‘

The solution of equation B.75, with necessary substitutions, can therefore have roots
either less than the minimum of the data series or greater than the maximum of the data series.
The curve corresponding to equation B.75 has several inflexions and, for reliability, a Bolzano
method is used to isolate the root clear of the effect of any inflexions before the faster Newton-
Raphson iteration method takes over. This method of solution has so far proved reliable.

The soluticn then gives the maximum likelihood estimates 5, 5, and m for the distribution
parameters.

Moment Estimates - No Historic Information

Taking moments of the p.d.f. given by equation B.73, re-arranging and replacing them
with their sample estimates gives

B.80
i-5
2
B.81
b = (2/g,)Y
P B.82
21

where x, s, and £, are computed from equations B.1, B.2, and B.3 with x replaced by its
natural logarithm, Inx,

Moment Estimates - with Historic Information

Section B. 1.3 describes how to obtain the historically-weighted mean, standard deviation,
and coefficient of skew for a historic sample. These estimates can be substituted directly for the
moment statistics in equations B.80, B.81, and B.82. These equations yield estimates ot the
parameters of the distribution based on the recorded data and historic information.
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. B.4.5 T-Year Flood Estimation - Log Pearson Type Il Distribution

B.4.5.1

B.4.5.2

B.4.53

Flood Estimation with No Low Cutliers Present

The cumulative probability function cannot be expressed in closed form.
Substituting y = (Inx -m)/a in the p.d.f. (equation B.73) and using the Wilson-Hilferty
(1931} approximation of chi-square results in:

Inxp =m +a

3
t L, pia B.83
3p /6 gp2/3

where Inxy is the logarithm of the T-year event and t is the standard normal deviate for
the required return period. Thus, xp = exp(lnxy).

* The Conditional Probability Function

The conditional value of the standard normal variate t!, is obtained using the
methodology outlined in section B.3.6.2. Once t! has been determined, it can be
substituted into equation B.83 to acquire the natural logarithm of the T-year design flood.

Flood Estimation with Low Qutliers Present

In the event that low outliers - zero or non-zero - have been identified in the
sample, a "synthetic" Log Pearson Type III distribution is fitted using synthetic statistics.
Parameters of the distribution are estimated by the moment relationships to equations
B.80, B.81, and B.82.

The first step is to determine the Q,, Qp, and Qg floods using the technique
outlined in section B.4.5.2. The synthetic statistics (Hydrology Subcommittee, 1982) are
determined based on the values from these three design floods. The relationships are:

g, = 2.5 + 3.12 | 200/ o) B.84
* _ - ) In(Q0/Q5)
_ nfQi007 Q) B.85
* Ko -Kso
is = ln(Q.S) - K‘SO(SS) B.86

where g, s, and x, are the synthetic logarithmic coefficient of skew, standard deviation,
and mean respectively; and K ; and K 4, are Pearson Type Il deviates for exceedance
probabilities of .01 and .50, respectively, and coefficient of skew. The Hydrology
Subcommittee (1982) indicates that equation B.84 "is an approximation appropriate for
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use between skew values of +2.5 and -2.0". The relationships for determining K ,; and

K 54 are:
’ B.87
Ko = = szzﬁ_ﬁl [E] +1] -1 '
‘ - 6 6

3
2‘ B.88
2 g :
Ko = 2 11 - |5 -1
50 g, [6]

B.5  The Wakeby Distribution

B.5.1 The Density Function

This distribution cannot be expressed as a probability density function, nor can the

probability function be expressed explicitly. In the formulation of Landwehr, et al. (1979, a,b),
it is defined as an inverse function by: '

x =m + a[l-(1-F )] - ¢[1-(1-F)9) B.89

where F is the probability of not exceeding x

m is a location parameter
a and c are scale parameters
b and d are shape parameters

B.5.2 L-Moment Estimates - No Historic Information

B.5.2.1

The Standard Case

- The method of L-moments is used to obtain parameter estimates. The
distribution itself, as well as programming, imposes limits on the magnitudes of
parameters b and d, and furthermore certain combinations of both magnitudes and signs
of parameters a, b, c, and d lead to improper definitions of the probability function.
Since it is arithmeticaily possible to obtain these combinations, the program checks the
parameters, and if a valid set of parameters is not obtained then the program output will
inform the user.

The solution method contains three potential scenarios. The first consists of an
attempt to obtain a valid set of the five parameters, If the parameters are invalid, then
m is set to zero and the remaining four parameters are determined. If this combination
is unacceptable, then the sample is fitted to a generalized Pareto distribution by the
method of L-moments (Hosking, 1988). When the generalized Pareto distribution is
involved, two of the parameters will be zero, depending on the sign of the parameter d.
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B.5.22

B.53

When d is positive, parameters a and b are set to zero. Otherwise, parameters ¢ and d
will be set to zero.

The algorithms used herein for the estimation of parameters of the Wakeby
distribution for the standard case are from the work of Hosking (1988).

Having found a valid set of parameters, then event magnitudes for any desired
probability of exceedance or return period can be obtained directly from equation (B.89),
since

P=1T-=(-F) B.90

where P is the probability of exceedance
T is the return period
F is the probability of non-exceedance

With Low Qutliers and/or Zeros

If in a sample size N such that n = N-L, and L of these sample members are
identified as low outliers and/or zeros, then from equations B.89 and B.90 and using the
conditional function (i.e. equation B.42)

x =m +a { 1-[aT/(n+L)]™® - ¢ {1-[aT/(n+L)}® } B9l

where m, a, b, ¢, and d are estimated using the n sample members only.
Parameter Estimation via Least Squares Regression - with Historic Information

As given by Houghton (1978), the probability function of the Wakeby in inverse form
is

x =e -a(l-F)* + c(1-F)™ B.92

Comparing equations B.89 and B.92, they differ only in the parameters e and m, and
m + a-c¢c = e. Houghton’s version of the distribution only permits positive values of a, b, c,
and d, but e can be either positive or negative. The solution is not given for cases where F does
not include historic information. The fitting method used in this program allows for additional
combinations of the parameters a, b, ¢, and d, provided that certain conditions are met. At all
stages a check is made to see that a valid set of parameters has been obtained. Furthermore, an
estimate of F can be made which will include historic information.

Rewriting equation B.92 gives

x = -aP® + P9 + ¢ B.93
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Houghton estimated F in equation B.92 using the median plotting position and herein P
is estimated using the Cunnane (1978) formula, and if historic information is available, then the
rank required in the Cunnane formula can be adjusted using the method of Benson (1950). The
necessary equations are given in section 3.8. Thus, for every member of the data sample
containing historic information, a corresponding estimate of the probability P can be made, and
parameter estirates can not be obtained by regression on these probabilities. The regression
method is similar to that proposed by Houghton.

Choose a cutoff point P, = 0.65 which will divide the sample into two parts; an upper
part such as Py is less than P_. Consider the upper portion first and rewrite equation B.93 to give

log (x,, ~ € + aPl:’) = log(c) - d log Py B.94

which is a linear equation of the formy = ¢ - dx. Start witha = 0,b = 1, P, = 0.65 and

€= (Xpn - 0.1) - xpg, —0D T - 1S B.95

where X, is the minimum member of the upper sample, and I takes on values of 1 to 60 by
increments of 1. Successively decrementing e as shown in equation B.95, equation B.94 gives,
by linear regression at each step, estimates of ¢, d, and the coefficient of determination, 2.
When a turning point in > has been reached at the penultimate trial of e, then a quadratic
equation is fitted to the last three values of e and r* and the value of e which gives a maximum
2 is selected. Thus, we have first estimates of e, ¢, and d governing the upper portion of the
curve, In this case, ¢ and d are both positive and e may be positive or negative.

Assuming these values are found within the search range, then a and b follow from a
further rearrangement of equation B.93:

log[-x, + e + chd] = log(a) + b log P, B.96

for all x, such that P is greater than P_.

Again, this equation is linear and parameters a and b are obtained by regression, noting
that the term inside the square brackets of equation B.96 is the residual of x, from the downward
extrapolation of the preliminary fit of the upper curve, This extrapolation may be above or below
the data points and, since logarithms of negative numbers do not exist, the programming has been
arranged to accept the two possibilities and the appropriate sign of a parameter allocated after the
regression. If the downward extrapolation is above the points, then from equation B.93, a must
be positive, and vice versa. Thus, first estimates of a, b, ¢, ar? d are obtained and tested for
validity. Assuming a valid set has been obtained, the entire procedure is repeated, starting at
equation B.94 but using the first estimates of e, a, and b. The second set of parameters are _
accepted as final estimates, provided they pass the test for validity. If the second set of .
parameters is invalid, then the first set of parameters is accepted. This is an extremely rare
occurrence. However, several problems may arise here depending on the nature of the sample.
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(i)

(iii)

(iv)

In some instances, not all residuals have the same sign, which makes the
regression for a and b impossible, since logarithms cannot be taken of negative numbers.
In this case, the highest member of the lower part is added to the upper part and the
entire procedure is repeated until at least ninety percent of the residuals have the same
sign. At this stage, if the residuals are positive, then a and b are estimated from the
regression using the positive values only. At this point, a will be positive and b may be
positive or negative. If b is negative, then the parameter set is illegal.

If ninety percent of the residuals are negative, then the positive values are
discarded. In this case, "a" is negative and equation B.93 is rewritten:

1 = log(a) + b log P, B.97

This indicates that the backward projection of the upper curve lies below the points,

residuals are positive, and therefore a is negative, but b can still be positive or negative,
although b negative is still inadmissible.

When a negative b is found, either after the initial choice of P, = 0.65, or during
the downward accumulation of points to get residuals of the same sign, then P, is reset
to 0.43 and the entire procedure is repeated until a valid set of parameters has been
obtained. '

Sometimes, when adding points from the lower portion of the curve, all lower
points can be absorbed. When only three lower half points remain, the absorption of
another point would make a regression for a and b impossible. Therefore, all three
remaining points are absorbed, a and b are assumed zero, and the regression is performed
using:

log{x, - e) = log(c) - d log P, B.98

Only one flood sample has been found where this has occurred, and a perfectly
acceptable fit was obtained.

When the limit of I is reached in equation B.95, the regression of equation B.94
may not have shown any turning point in the coefficient of determination, 2. It is then

possible that either I is not large enough or, more likely, the Wakeby distribution is
hounded above. In the upper bounded case, ¢ is negative and equation B.93 is rewritten:

log (-x, + e -~ aP.) = log(c) - d log P, B.99

is a linear equation of the form y = ¢ - dx. Start witha =0,b = 1, P, = 0.65 and

e = (X, + 10) @ + 3)/4 B.100
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B.5.3.1

- where x . is the largest member of the upper sample and I takes on values of 1 to 200

by increments of 1. Successively incrementing e as shown in equation B.100, equation
B.99 gives, by linear regression at each step, estimates of ¢, d, and the coefficient of
determination, . When a turning point has been reached at the penultimate trial of e,
then a quadratic equation is fitted to the last three pairs of e and 2, and the value of e
which gives a maximum r? is chosen. Thus, again we have first estimates of e, ¢, and
d governing the upper part of the curve. In this case, both ¢ and d are negative and e
can be only positive,

Parameters a and b are then estimated by the aforementioned methods. The
parameter set is always checked for validity.

Thirty-four sets of data with historic information were tested, and in all cases
valid sets of parameters were obtained. Floods of any desired probability of exceedance
are then obtained from equation B.93, and if ceturn periods T are preferable, then
equation B.93 gives

x =-aT™? +cTY + e B.101

With Low Qutliers and/or Zeros and Historic Information

If, in a sample size n+L, with a historic time span of YT years, L sample
members have been identified as low outliers and/or zeros, then estimates of P are made
still using the L low outliers and/or zeros. First, estimates of parameters e, c, and d are
made as previously described, but estimates of a and b are made omitting the L low
outliers andfor zeros. The process repeats, still omitting the outliers and/or zeros, and
ensuring as before that a valid set of parameters has been found. To find the floods of
various return periods, conditional probability is used and equation B. 10l becomes

x = -a[nT/@+L)]™® + c[aT/(@+L)]° + e B.102

B.6 The Weibull Distribution

B.6.1 The Density Function

The distribution function is :

The probability density function of the Weibull distribution can be expressed as

_ a~1 (v )@
f(x) = [_E_] [u’:] exp {- x-e ] B.103
u-g u-e | u-¢

F(x) = 1- [exp— [E] i B.104
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where F(x) is the probability of a value of the variate being less than x. The parameters of the
distribution are e, u, and a. The distribution is bounded below at e and unbounded above.

B.6.2 Moment Estimates - No Historic Information

Moments of the distribution can be expressed as functions of the parameters, and if the
moments are replaced by their best estimates from the sample, a re-arrangement gives

_ T(1+3/a) - 3T (1+2/a)T (1+1/a) + 2I3(1+1/a) B.105
[T (1+2/a) - T2(1+1/a)]??

s[T(1+1/2))

B.106
[T(1+2/a) - T2(1+1/a)]"?

s[1 - T'(1+1/a)]
[T(1+2/a) - T2(1+1/a)]/?

u=x+

B.107

where X, s, and g, are respectively the best estimates of the population mean, standard deviation,
and coefficient of skew as per equations B.1, B.2, and B.3. T() is the gamma function of the
argument within parenthesis.

When g, has been estimated, equation B.104 can be solved by some numerical method
to give 1/a. As a simpler alternative, the following three polynomiais will give i/a to a high
degree of accuracy:

1/a = 0.27730 + 0.3252g, + 0.07632g> + 0.00388¢g;

B.108(2)
(-1.08 < g, < +0.158308)
1/a = 0.27586 + 0.33071g, + 0.05004g> - 0.01737g’ B.108(b)
(+0.158308 < g, < +1.910765)
1/a = 1.27421 In (0.58452g, + 1.02291) B.108(c)

(+1.910765 < g, < + 5)

Using this value of 1/a and best estimates of x and s, and a subroutine for the gamma
function in equations B.94 and B.95 gives estimates of e and u, thus defining the parameters ot
the distribution.
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B.6.3 T-Year Flood Estimation - Weibull Distribution

B.6.3.1

B.6.3.2

B.6.3.3

Flood Estimation with No Low Outliers Present

If no low outliers are to be treated, the T-year floods are computed from
Qr = ¢ + (u-e) (InT)"® B.109

where T is the return period of the event and e, u, and a are the parameters of the
distribution. The program computes and displays flood estimates for return periods of
1.003, 1.05, 1.25, 2, 5, 10, 20, 50, 100, 200, and 500 years.

The Conditional Probability Function

Consider a sample of N observations, where L observations have been identified
as low outliers. From equations B.40, B.41, and B.42, the magnitude of the T-year
event for the Weibull distribution when low outliers are present is:

Qr =e + (u-¢) {In[T (N-L)/N] }!/= B.110

Flood Estimation with Low Outliers Present

In the event that low outliers — zero or non-zero — have been identified in the
sample, the L outliers are removed from the sample of size N and the distribution
parameters are estimated from the N-L remaining observations, either by maximum
likelihood or by moments as previously outlined. This procedure is followed in the case
of a historic analysis as well as a conventional analysis. Floods for any desired return
period or probability of exceedance can then be estimated using these parameters, known
values of N and L, and equation B.110.

However, this procedure will give a probability function which is not truly that
of the distribution. Furthermore, it is not possible to estimate tloods of return periods
less than N/(N-L) because, in the conditional probability function, their exceedance
probabilities then become greater than one.

To avoid these difficulties, a "synthetic” Weibull distribution is fitted through that
portion of the "conditional” frequency curve between T=2 and T=100. Since three
parameters have to be estimated, three points on the curve are necessary. The
mathematics are considerably simplified by choosing the floods of return periods 2,
5.969, and 100 years. Parameters follow from

_ Q0 Q5969 B.111
Qoo + Qy - 2Qs5.960
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-0.94682

F: [ U —
~ B.112
In (Qz €)
Qs.960 €
u = E._ +e B.113
69315178

The "retro-fitted" parameters of the Weibull distribution can then be used in
equation B.109 to produce revised flood estimates for the required return periods.

Note that the procedure of retro-fitting the parameters to produce a synthetic
Weilbull distribution is used only when all of the low outliers are non-zero. The
procedure is not used when zeros are present in the sample because it can result in an
unrealistic situation whereby the exceedance probability of a non-zero flow is larger than
the exceedance probability of zero flow as indicated by the sample.
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APPENDIX C: The Nonparametric Density Estimation Method

The nonparametric method does not require either the assumption of any functional form of
density function, nor estimation of parameters based on the mean, variance and skew. The nonparametric
kernel density estimation requires (Adamowski, 1985; Adamowski, 1989) the selection of a kernel
function, k(®), which is itself a probability density function, a positive smoothing factor H, and a sample
of N observations X, X,, ... xy. The kernel estimate of density function f(x) at each fixed point x is

X-X;

H

£x) = C.1

1 N
T K
NH o

The principle of kernel estimator as expressed by equation C.1 is that with sach observation a
probability density function (kernel) of prescribed form (i.e. rectangular, normal, Gumbel etc.) is
associated over a specified range {expressed by H) on either side of the observation. The set of such
functions constitutes the nonparametric estimate of the density function. The normal form of the kernel
is used herein. The adaptation of the nonparametric method is due primarily to the efforts of Prof. K.
Adamowski, University of Ottawa.

C.1  An Optimal Kernel

It has been established (Adamowski, 1988) that the optimal (in the mean integrated square error
sense) and the most efficient kernel is the Epanechnikov kernel; however, this kernel is bounded and as
such, is not particularly desirable in flood frequency analysis when often an extrapolation of density
function is required. Therefore, with a very small loss of accuracy, a Gaussian kernel is recommended
in flood frequency analysis, that is

k(x) = 1 o -12)%7 C.2
yiw

C.2  Optimal Value of H

The optimal value of H is determined based on the cross-validation procedure which requires
numerical solution by successive approximations of the following equation (Rudemo, 1982)

2 2 |
Q(F) = A+ B L, [exp-afj/4) - C exp(-a};/2) C3

where f is an estimate of f(x), A = @NHVZ®)!, B = (N*HV@)!, C = 2v2 N/N-1j, and
Ay = (xi-xj)fH. When H is evaluated to be less than 0.01, it is re-evaluated by the expression:

C.4
H = N2(4/3)%s
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where N is the sample size and s is the standard deviation of the N observations as obtained from
equation B.2

Using an integrated mean square error criterion, it was found (Rudemo, 1982) that the
asymptotically optimal value of H for a Gaussian kernal is given by

Hasy = (24&)1!3 N—la"3 s C.5

Cc.3 Estimation with Historic Information

Assume that there are n, systematic observations, denoted by {x, x,, xno} and v historical flows,
denoted by {xn } that happen to exceed the censoring threshold Y during the
m = (N-n,) year lnstoncal record0 It is therefore assumed that there are two sets of data whose
probability values are estitnated by (Adamowski and Feluch, 1990; Adamowski and Pilon, 1989)

{x; <Y };°, with probability p(x <Y) = “;“‘ - C6

and

x> Y},.l ™ with probability p(x > Y) = C.7

o|8

The unknown density function is estimated by a two component mixture medel given by:

f(x) = fx<y) p(x=y) + f(x>y) p(x>y)

where the density f(®) is estimated nonparametrically based on equation C.1

Assuming normal kernel (equation C.2), the value of smoothing parameter H is derived based

on the cross-validation procedure which requires the solution of the following equation (Adamowski and
Feluch, 1990).

nO
2
-n, + i,j):=1 d; [(1-2cdig)(ai;-1)-1] = 0 C.9
i<j
2 C.10
where  d;; = exp |aj; / 4,45 = (x; ~ x)/4, and C=2y2 N/(N-1)
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Table 1: Grubbs and Beck Outlier Test - 10 percent Significance Level Ky Values

The body of the table below contains one-tail values of the
10 percent significance values of Ky, for samples size N
from a normal population (Grubbs and Beck, 1972).

Sample Kn Sample K, Sample K, - Sample K
size value size value size value size valie
10 2.036 45 2.727 80 2.940 115 3.064
11 2.088 46 2.736 81 2.945 116 3.067
12 2.134 47 2.744 82 2.949 117 3.070
13 2.175 48 2.753 83 2.953 118 3.073
14 2.213 49 2.760 84 2.957 119 3.075
15 2.247 50 2.768 83 2.961 120 3.078
16 2.279 51 2.775 86 2.966 121 3.081
17 2.309 52 2.783 87 2.970 122 3.083
18 2.335 53 2.790 88 2.973 123 3.086
19 2.361 54 2.798 89 2977 124 3.080
20 2.385 55 2.804 90 2.981 125 3.092
21 2.408 56 2.811 91 2.984 126 3.095
: 22 2.429 57 2.818 92 . 2.989 127 3.097
. 23 2.448 58 2.824 93 2.993 128 3.100
24 2.467 59 2.831 94 2.996 129 3.102
25 2.436 60 2.837 95 3.000 130 3.104
26 2.502 61 2.842 96 3.003 131 3.107
27 2.519 62 2.849 97 3.006 132 3.109
28 2.534 63 2.854 98 3.011 133 3.112
29 2.549 64 2.860 99 3.014 134 3.114
30 2.563 65 2.866 100 3.017 135 3.116
31 2.577 66 2.871 101 3.021 136 3.119
32 2.591 67 2.877 102 3.024 137 3.122
33 2.604 68 2.883 103 3.027 138 3.124
34 2.616 69 2.888 104 3.030 139 3.126
35 2.628 70 2.893 105 3.033 140 3.129
36 2.639 71 2.897 106 3.037 141 3.131
37 2.650 7 2.903 107 3.040 142 3.133
38 2.661 73 2.908 108 3.043 143 3.135
39 2.671 74 2912 109 3.046 144 3.138
v 40 2.682 75 2.917 110 3.049 145 3.140
41 2.692 76 2.922 111 3.052 146 3.142
42 2.700 77 2.927 112 3.055 147 3.144
43 2.710 78 2.931 113 3.058 148 3.146
44 2.719 79 2.935 114 3.061 149 3.148
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Then, any sample members greater than Xy; are considered high outliers and those less than X
are considered to be low outliers.

If historic information has been found and the skewness of the transformed variate is greater than
.4, then the low outlier test is modified to:

X = exp (X - Ky§) (1b)

where X and ¥ are the historically weighted mean and standard deviation of the natural logarithms of
the sample, respectively. Ky is evaluated where N is set to YT, the total historic time span. YT is

further described in section 3.5. The methodology for obtaining historically weighted moments is given
in Appendix B.2,

The sequence of testing depends on the skewness of the logarithms of the sample g,. The
sequence can be followed using the flow diagram of Figure 4. When a frequency analysis is being
performed on a conventional sample, the outlier test determines if low and/or high outliers exit. All
outliers for the conventional sample are indicated as being so in the standard tabular output of the flood
data. A warning is issued to the user if a high outlier is detected. If historic information is present, the
program will only check for low outliers. If a high outlier is detected and no historic information can
be associated with the event, then a conventional analysis should proceed with the high outlier included
in the sample. The user has the opportunity to change the number of low outliers detected by the
program before proceeding with the parametric frequency analysis. Note that outlier analysis is not
performed when proceeding with a nonparametric frequency analysis.
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